184,765 research outputs found
On reduced density matrices for disjoint subsystems
We show that spin and fermion representations for solvable quantum chains
lead in general to different reduced density matrices if the subsystem is not
singly connected. We study the effect for two sites in XX and XY chains as well
as for sublattices in XX and transverse Ising chains.Comment: 10 pages, 4 figure
Cyclic and ruled Lagrangian surfaces in complex Euclidean space
We study those Lagrangian surfaces in complex Euclidean space which are
foliated by circles or by straight lines. The former, which we call cyclic,
come in three types, each one being described by means of, respectively, a
planar curve, a Legendrian curve of the 3-sphere or a Legendrian curve of the
anti de Sitter 3-space. We also describe ruled Lagrangian surfaces. Finally we
characterize those cyclic and ruled Lagrangian surfaces which are solutions to
the self-similar equation of the Mean Curvature Flow. Finally, we give a
partial result in the case of Hamiltonian stationary cyclic surfaces
Are Giant Planets Forming Around HR 4796A?
We have obtained FUSE and HST STIS spectra of HR 4796A, a nearby 8 Myr old
main sequence star that possesses a dusty circumstellar disk whose inclination
has been constrained from high resolution near-infrared observations to be ~17
deg from edge-on. We searched for circumstellar absorption in the ground states
of C II at 1036.3 A, O I at 1039.2 A, Zn II at 2026.1 A, Lyman series H2, and
CO (A-X) and failed to detect any of these species. We place upper limits on
the column densities and infer upper limits on the gas masses assuming that the
gas is in hydrostatic equilibrium, is well-mixed, and has a temperature, Tgas ~
65 K. Our measurements suggest that this system possesses very little molecular
gas. Therefore, we infer an upper limit for the gas:dust ratio (<4.0) assuming
that the gas is atomic. We measure less gas in this system than is required to
form the envelope of Jupiter.Comment: 10 pages, 3 figures (including 1 color figure), accepted for
publication in Ap
Spectroscopic characterization of the oxo-transfer reaction from a bis(µ-oxo)dicopper(III) complex to triphenylphosphine
The oxygen-atom transfer reaction from the bis(µ-oxo)dicopper(III) complex [CuIII2(µ-O)2(L)2]2+1, where L =N,N,N,N -tetraethylethylenediamine, to PPh3 has been studied by UV-vis, EPR, 1H NMR and Cu K-edge X-ray absorption spectroscopy in parallel at low temperatures (193 K) and above. Under aerobic conditions (excess dioxygen), 1 reacted with PPh3, giving OPPh3 and a diamagnetic species that has been assigned to an oxo-bridged dicopper(II) complex on the basis of EPR and Cu K-edge X-ray absorption spectroscopic data. Isotope-labeling experiments (18O2) established that the oxygen atom incorporated into the triphenylphosphine oxide came from both complex 1 and exogenous dioxygen. Detailed kinetic studies revealed that the process is a third-order reaction; the rate law is first order in both complex 1 and triphenylphosphine, as well as in dioxygen. At temperatures above 233 K, reaction of 1 with PPh3 was accompanied by ligand degradation, leading to oxidative N-dealkylation of one of the ethyl groups. By contrast, when the reaction was performed in the absence of excess dioxygen, negligible substrate (PPh3) oxidation was observed. Instead, highly symmetrical copper complexes with a characteristic isotropic EPR signal at g= 2.11 were formed. These results are discussed in terms of parallel reaction channels that are activated under various conditions of temperature and dioxygen
Determining the strange and antistrange quark distributions of the nucleon
The difference between the strange and antistrange quark distributions,
\delta s(x)=s(x)-\sbar(x), and the combination of light quark sea and strange
quark sea, \Delta (x)=\dbar(x)+\ubar(x)-s(x)-\sbar(x), are originated from
non-perturbative processes, and can be calculated using non-perturbative models
of the nucleon. We report calculations of and using
the meson cloud model. Combining our calculations of with
relatively well known light antiquark distributions obtained from global
analysis of available experimental data, we estimate the total strange sea
distributions of the nucleon.Comment: 4 pages, 3 figures; talk given by F.-G. at QNP0
Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation
We present a further theoretical extension to the kinetic theory based
formulation of the lattice Boltzmann method of Shan et al (2006). In addition
to the higher order projection of the equilibrium distribution function and a
sufficiently accurate Gauss-Hermite quadrature in the original formulation, a
new regularization procedure is introduced in this paper. This procedure
ensures a consistent order of accuracy control over the non-equilibrium
contributions in the Galerkin sense. Using this formulation, we construct a
specific lattice Boltzmann model that accurately incorporates up to the third
order hydrodynamic moments. Numerical evidences demonstrate that the extended
model overcomes some major defects existed in the conventionally known lattice
Boltzmann models, so that fluid flows at finite Knudsen number (Kn) can be more
quantitatively simulated. Results from force-driven Poiseuille flow simulations
predict the Knudsen's minimum and the asymptotic behavior of flow flux at large
Kn
On Kernel Formulas and Dispersionless Hirota Equations
We rederive dispersionless Hirota equations of the dispersionless Toda
hierarchy from the method of kernel formula provided by Carroll and Kodama. We
then apply the method to derive dispersionless Hirota equations of the extended
dispersionless BKP(EdBKP) hierarchy proposed by Takasaki. Moreover, we verify
associativity equations (WDVV equations) in the EdBKP hierarchy from
dispersionless Hirota equations and give a realization of associative algebra
with structure constants expressed in terms of residue formula.Comment: 30 pages, minor corrections, references adde
- …
