1,316 research outputs found
Elizabethkingia anophelis bacteremia is associated with clinically significant infections and high mortality
published_or_final_versio
Perivascular epithelioid cell tumor of the retroperitoneum in a young woman resulting in an abdominal chyloma
Perivascular epithelioid cell tumor (PEComa) is an extremely rare neoplasm which appears to have predominancy for young, frequently Asian, women. The neoplasm is composed chiefly of HMB-45-positive epithelioid cells with clear to granular cytoplasm and usually showing a perivascular distribution. These tumors have been reported in various organs under a variety of designations. Malignant PEComas exist but are very rare. The difficulty in determining optimal therapy, owing to the sparse literature available, led us to present this case. We report a retroperitoneal PEComa discovered during emergency surgery for abdominal pain in a 28-year-old Asian woman. The postoperative period was complicated by chylous ascites that was initially controlled by a wait-and-see policy with total parenteral nutrition. However, the chyle production gradually increased to more than 4 l per day. The development of a bacterial peritonitis resulted in cessation of production of abdominal fluid permitting normal nutrition without chylous leakage. Effective treatment for this rare complication of PEComa is not yet known; therefore, we have chosen to engage in long-term clinical follow-up
Effects of pretreatments of Napier Grass with deionized water, sulfuric acid and sodium hydroxide on pyrolysis oil characteristics
The depletion of fossil fuel reserves has led to
increasing interest in liquid bio-fuel from renewable biomass. Biomass is a complex organic material consisting of
different degrees of cellulose, hemicellulose, lignin,
extractives and minerals. Some of the mineral elements
tend to retard conversions, yield and selectivity during
pyrolysis processing. This study is focused on the extraction of mineral retardants from Napier grass using deionized water, dilute sodium hydroxide and sulfuric acid and subsequent pyrolysis in a fixed bed reactor. The raw biomass was characterized before and after each pretreatment
following standard procedure. Pyrolysis study was conducted
in a fixed bed reactor at 600 o�C, 30 �C/min and 30 mL/min N2 flow. Pyrolysis oil (bio-oil) collected was analyzed using standard analytic techniques. The bio-oil yield and characteristics from each pretreated sample were compared with oil from the non-pretreated sample. Bio-oil
yield from the raw sample was 32.06 wt% compared to
38.71, 33.28 and 29.27 wt% oil yield recorded from the
sample pretreated with sulfuric acid, deionized water and
sodium hydroxide respectively. GC–MS analysis of the oil
samples revealed that the oil from all the pretreated biomass had more value added chemicals and less ketones and
aldehydes. Pretreatment with neutral solvent generated
valuable leachate, showed significant impact on the ash
extraction, pyrolysis oil yield, and its composition and
therefore can be regarded as more appropriate for thermochemical conversion of Napier grass
Spinning strings and integrable spin chains in the AdS/CFT correspondence
In this introductory review we discuss dynamical tests of the AdS_5 x S^5
string/N=4 super Yang-Mills duality. After a brief introduction to AdS/CFT we
argue that semiclassical string energies yield information on the quantum
spectrum of the string in the limit of large angular momenta on the S^5. The
energies of the folded and circular spinning string solutions rotating on a S^3
within the S^5 are derived, which yield all loop predictions for the dual gauge
theory scaling dimensions. These follow from the eigenvalues of the dilatation
operator of N=4 super Yang-Mills in a minimal SU(2) subsector and we display
its reformulation in terms of a Heisenberg s=1/2 spin chain along with the
coordinate Bethe ansatz for its explicit diagonalization. In order to make
contact to the spinning string energies we then study the thermodynamic limit
of the one-loop gauge theory Bethe equations and demonstrate the matching with
the folded and closed string result at this loop order. Finally the known gauge
theory results at higher-loop orders are reviewed and the associated long-range
spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop
conjecture for the gauge theory Bethe equations. This uncovers discrepancies at
the three-loop order between gauge theory scaling dimensions and string theory
energies and the implications of this are discussed. Along the way we comment
on further developments and generalizations of the subject and point to the
relevant literature.Comment: 40 pages, invited contribution to Living Reviews in Relativity. v2:
improvements in the text and references adde
Image informatics strategies for deciphering neuronal network connectivity
Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies
The generalized cusp in ABJ(M) N = 6 Super Chern-Simons theories
We construct a generalized cusped Wilson loop operator in N = 6 super
Chern-Simons-matter theories which is locally invariant under half of the
supercharges. It depends on two parameters and interpolates smoothly between
the 1/2 BPS line or circle and a pair of antiparallel lines, representing a
natural generalization of the quark-antiquark potential in ABJ(M) theories. For
particular choices of the parameters we obtain 1/6 BPS configurations that,
mapped on S^2 by a conformal transformation, realize a three-dimensional
analogue of the wedge DGRT Wilson loop of N = 4. The cusp couples, in addition
to the gauge and scalar fields of the theory, also to the fermions in the
bifundamental representation of the U(N)xU(M) gauge group and its expectation
value is expressed as the holonomy of a suitable superconnection. We discuss
the definition of these observables in terms of traces and the role of the
boundary conditions of fermions along the loop. We perform a complete two-loop
analysis, obtaining an explicit result for the generalized cusp at the second
non-trivial order, from which we read off the interaction potential between
heavy 1/2 BPS particles in the ABJ(M) model. Our results open the possibility
to explore in the three-dimensional case the connection between localization
properties and integrability, recently advocated in D = 4.Comment: 53 pages, 10 figures, added references, this is the version appeared
on JHE
Lung Cancer in Pulmonary Fibrosis: Tales of Epithelial Cell Plasticity
Lung epithelial cells exhibit a high degree of plasticity. Alterations to lung epithelial cell function are critically involved in several chronic lung diseases such as pulmonary fibrosis. Pulmonary fibrosis is characterized by repetitive injury and subsequent impaired repair of epithelial cells, which leads to aberrant growth factor activation and fibroblast accumulation. Increased proliferation and hyper- and metaplasia of epithelial cells upon injury have also been observed in pulmonary fibrosis; this epithelial cell activation might represent the basis for lung cancer development. Indeed, several studies have provided histopathological evidence of an increased incidence of lung cancer in pulmonary fibrosis. The mechanisms involved in the development of cancer in pulmonary fibrosis, however, remain poorly understood. This review highlights recently uncovered molecular mechanisms shared between lung cancer and fibrosis, which extend the current evidence of a common trait of cancer and fibrosis, as provided by histopathological observations. Copyright (C) 2011 S. Karger AG, Base
In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters.
The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruses to neonatal rodents as an alternative to the existing technology of generating germline transgenic light producing rodents. At this age, neonates acquire immune tolerance to the conditionally responsive luciferase reporter. This simple and transferrable procedure permits surrogate quantitation of transcription factor activity over the lifetime of the animal. We show principal efficacy by temporally quantifying NFκB activity in the brain, liver and lungs of somatotransgenic reporter mice subjected to lipopolysaccharide (LPS)-induced inflammation. This response is ablated in Tlr4(-/-) mice or when co-administered with the anti-inflammatory glucocorticoid analogue dexamethasone. Furthermore, we show the malleability of this technology by quantifying NFκB-mediated luciferase expression in outbred rats. Finally, we use somatotransgenic bioimaging to longitudinally quantify LPS- and ActivinA-induced upregulation of liver specific glucocorticoid receptor and Smad2/3 reporter constructs in somatotransgenic mice, respectively
Regenerative endodontics: a true paradigm shift or a bandwagon about to be derailed?
Aims: Regenerative endodontic techniques (RETs) have been hailed as a paradigm shift for the management of traumatised non-vital immature permanent anterior teeth. In this article the aim was to critically appraise the literature with regards to the outcome of regenerative endodontics on root development. Methods: Critical review of the literature where regenerative endodontic techniques have been used in the management of immature non-vital teeth with continuation of root development as the main outcome reported. Results: Most studies published were in the form of case reports and series with very few randomised controlled trials with a high risk of bias. Continuation of root development following the use of RET has been shown to be unpredictable at best with lower success in those teeth losing vitality as a result of dental trauma. Conclusions: Despite the high success of regenerative endodontics in terms of periodontal healing including resolution of clinical and radiographic signs and symptoms of infection, continuation of root development remains an unpredictable outcome. The use of a blood clot as a scaffold in regenerative endodontics should be reviewed carefully as that might offer an environment for repair rather than regeneration. In addition, preservation of structures, such as Hertwig’s epithelial root sheath, may have an important bearing on the success of this approach and should be further investigated
A cotton miRNA is involved in regulation of plant response to salt stress
The present study functionally identified a new microRNA (microRNA ovual line 5, miRNVL5) with its target gene GhCHR from cotton (Gossypium hirsutum). The sequence of miRNVL5 precursor is 104 nt long, with a well developed secondary structure. GhCHR contains two DC1 and three PHD Cys/His-rich domains, suggesting that GhCHR encodes a zinc-finger domain-containing transcription factor. miRNVL5 and GhCHR express at various developmental stages of cotton. Under salt stress (50–400 mM NaCl), miRNVL5 expression was repressed, with concomitant high expression of GhCHR in cotton seedlings. Ectopic expression of GhCHR in Arabidopsis conferred salt stress tolerance by reducing Na+ accumulation in plants and improving primary root growth and biomass. Interestingly, Arabidopsis constitutively expressing miRNVL5 showed hypersensitivity to salt stress. A GhCHR orthorlous gene At2g44380 from Arabidopsis that can be cleaved by miRNVL5 was identified by degradome sequencing, but no confidential miRNVL5 homologs in Arabidopsis have been identified. Microarray analysis of miRNVL5 transgenic Arabidopsis showed six downstream genes (CBF1, CBF2, CBF3, ERF4, AT3G22920, and AT3G49200), which were induced by salt stress in wild-type but repressed in miRNVL5-expressing Arabidopsis. These results indicate that miRNVL5 is involved in regulation of plant response to salt stress
- …
