255,869 research outputs found
Strong gravitational lensing in a squashed Kaluza-Klein black hole spacetime
We investigate the strong gravitational lensing in a Kaluza-Klein black hole
with squashed horizons. We find the size of the extra dimension imprints in the
radius of the photon sphere, the deflection angle, the angular position and
magnification of the relativistic images. Supposing that the gravitational
field of the supermassive central object of the Galaxy can be described by this
metric, we estimated the numerical values of the coefficients and observables
for gravitational lensing in the strong field limit.Comment: 13pages, 5 figures, Final version appeared in PR
An artificial intelligence-based structural health monitoring system for aging aircraft
To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary
Composite-fermionization of bosons in rapidly rotating atomic traps
The non-perturbative effect of interaction can sometimes make interacting
bosons behave as though they were free fermions. The system of neutral bosons
in a rapidly rotating atomic trap is equivalent to charged bosons coupled to a
magnetic field, which has opened up the possibility of fractional quantum Hall
effect for bosons interacting with a short range interaction. Motivated by the
composite fermion theory of the fractional Hall effect of electrons, we test
the idea that the interacting bosons map into non-interacting spinless fermions
carrying one vortex each, by comparing wave functions incorporating this
physics with exact wave functions available for systems containing up to 12
bosons. We study here the analogy between interacting bosons at filling factors
with non-interacting fermions at for the ground state
as well as the low-energy excited states and find that it provides a good
account of the behavior for small , but interactions between fermions become
increasingly important with . At , which is obtained in the limit
, the fermionization appears to overcompensate for the
repulsive interaction between bosons, producing an {\em attractive}
interactions between fermions, as evidenced by a pairing of fermions here.Comment: 8 pages, 3 figures. Submitted to Phys. Rev.
Observations of ozone production in a dissipating tropical convective cell during TC4
From 13 July–9 August 2007, 25 ozonesondes were launched from Las Tablas, Panama as part of the Tropical Composition, Cloud, and Climate Coupling (TC4) mission. On 5 August, a strong convective cell formed in the Gulf of Panama. World Wide Lightning Location Network (WWLLN) data indicated 563 flashes (09:00–17:00 UTC) in the Gulf. NO2 data from the Ozone Monitoring Instrument (OMI) show enhancements, suggesting lightning production of NOx. At 15:05 UTC, an ozonesonde ascended into the southern edge of the now dissipating convective cell as it moved west across the Azuero Peninsula. The balloon oscillated from 2.5–5.1 km five times (15:12–17:00 UTC), providing a unique examination of ozone (O3) photochemistry on the edge of a convective cell. Ozone increased at a rate of 1.6–4.6 ppbv/hr between the first and last ascent, resulting cell wide in an increase of (2.1–2.5)×106 moles of O3. This estimate agrees to within a factor of two of our estimates of photochemical lightning O3 production from the WWLLN flashes, from the radar-inferred lightning flash data, and from the OMI NO2 data (1.2, 1.0, and 1.7×106 moles, respectively), though all estimates have large uncertainties. Examination of DC-8 in situ and lidar O3 data gathered around the Gulf that day suggests 70–97% of the O3 change occurred in 2.5–5.1 km layer. A photochemical box model initialized with nearby TC4 aircraft trace gas data suggests these O3 production rates are possible with our present understanding of photochemistry
Purification of genuine multipartite entanglement
In tasks, where multipartite entanglement plays a central role, state
purification is, due to inevitable noise, a crucial part of the procedure. We
consider a scenario exploiting the multipartite entanglement in a
straightforward multipartite purification algorithm and compare it to bipartite
purification procedures combined with state teleportation. While complete
purification requires an infinite amount of input states in both cases, we show
that for an imperfect output fidelity the multipartite procedure exhibits a
major advantage in terms of input states used.Comment: 5 pages, 2 figure
Molecular beam epitaxial growth of high-quality InSb on InP and GaAs substrates
Epitaxial layers of InSb were grown on InP and GaAs substrates by molecular beam epitaxy. The dependence of the epilayer quality on flux ratio, J sub Sb4/J sub In, was studied. Deviation from an optimum value of J sub Sb4/J sub In (approx. 2) during growth led to deterioration in the surface morphology and the electrical and crystalline qualities of the films. Room temperature electron mobilities as high as 70,000 and 53,000 sq cm /V-s were measured in InSb layers grown on InP and GaAs substrates, respectively. Unlike the previous results, the conductivity in these films is n-type even at T = 13 K, and no degradation of the electron mobility due to the high density of dislocations was observed. The measured electron mobilities (and carrier concentrations) at 77 K in InSb layers grown on InP and GaAs substrates are 110,000 sq cm/V-s (3 x 10(15) cm(-3)) and 55,000 sq cm/V-s (4.95 x 10(15) cm(-3)), respectively, suggesting their application to electronic devices at cryogenic temperatures
Superconductivity in the Two-Dimensional - Model at Low Hole Doping
By combining a generalized Lanczos scheme with the variational Monte Carlo
method we can optimize the short- and long-range properties of the groundstate
separately. This allows us to measure the long-range order of the groundstate
of the - model as a function of the coupling constant , and identify
a region of finite d-wave superconducting long-range order. With a lattice size
of 50 sites we can reliably examine hole densities down to 0.16.Comment: 12 pages and 4 PostScript figures, ReVTeX 3.0, ETH-TH/94-1
- …
