13,381 research outputs found
Nonlinear Impurity Modes in Homogeneous and Periodic Media
We analyze the existence and stability of nonlinear localized waves described
by the Kronig-Penney model with a nonlinear impurity. We study the properties
of such waves in a homogeneous medium, and then analyze new effects introduced
by periodicity of the medium parameters. In particular, we demonstrate the
existence of a novel type of stable nonlinear band-gap localized states, and
also reveal an important physical mechanism of the oscillatory wave
instabilities associated with the band-gap wave resonances.Comment: 11 pages, 3 figures; To be published in: Proceedings of the NATO
Advanced Research Workshop "Nonlinearity and Disorder: Theory and
Applications" (Tashkent, 2-6 Oct, 2000) Editors: P.L. Christiansen and F.K.
Abdullaev (Kluwer, 2001
A peptide mimic of the chemotaxis inhibitory protein of Staphylococcus aureus: towards the development of novel anti-inflammatory compounds
Complement factor C5a is one of the most powerful pro-inflammatory agents involved in recruitment of leukocytes, activation of phagocytes and other inflammatory responses. C5a triggers inflammatory responses by binding to its G-protein-coupled C5a-receptor (C5aR). Excessive or erroneous activation of the C5aR has been implicated in numerous inflammatory diseases. The C5aR is therefore a key target in the development of specific anti-inflammatory compounds. A very potent natural inhibitor of the C5aR is the 121-residue chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS). Although CHIPS effectively blocks C5aR activation by binding tightly to its extra-cellular N terminus, it is not suitable as a potential anti-inflammatory drug due to its immunogenic properties. As a first step in the development of an improved CHIPS mimic, we designed and synthesized a substantially shorter 50-residue adapted peptide, designated CHOPS. This peptide included all residues important for receptor binding as based on the recent structure of CHIPS in complex with the C5aR N terminus. Using isothermal titration calorimetry we demonstrate that CHOPS has micromolar affinity for a model peptide comprising residues 7–28 of the C5aR N terminus including two O-sulfated tyrosine residues at positions 11 and 14. CD and NMR spectroscopy showed that CHOPS is unstructured free in solution. Upon addition of the doubly sulfated model peptide, however, the NMR and CD spectra reveal the formation of structural elements in CHOPS reminiscent of native CHIPS
Challenges to the development of antigen-specific breast cancer vaccines
Continued progress in the development of antigen-specific breast cancer vaccines depends on the identification of appropriate target antigens, the establishment of effective immunization strategies, and the ability to circumvent immune escape mechanisms. Methods such as T cell epitope cloning and serological expression cloning (SEREX) have led to the identification of a number target antigens expressed in breast cancer. Improved immunization strategies, such as using dendritic cells to present tumor-associated antigens to T lymphocytes, have been shown to induce antigen-specific T cell responses in vivo and, in some cases, objective clinical responses. An outcome of successful tumor immunity is the evolution of antigen-loss tumor variants. The development of a polyvalent breast cancer vaccine, directed against a panel of tumor-associated antigens, may counteract this form of immune escape
Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations
While the investors' responses to price changes and their price forecasts are
well accepted major factors contributing to large price fluctuations in
financial markets, our study shows that investors' heterogeneous and dynamic
risk aversion (DRA) preferences may play a more critical role in the dynamics
of asset price fluctuations. We propose and study a model of an artificial
stock market consisting of heterogeneous agents with DRA, and we find that DRA
is the main driving force for excess price fluctuations and the associated
volatility clustering. We employ a popular power utility function,
with agent specific and
time-dependent risk aversion index, , and we derive an approximate
formula for the demand function and aggregate price setting equation. The
dynamics of each agent's risk aversion index, (i=1,2,...,N), is
modeled by a bounded random walk with a constant variance . We show
numerically that our model reproduces most of the ``stylized'' facts observed
in the real data, suggesting that dynamic risk aversion is a key mechanism for
the emergence of these stylized facts.Comment: 17 pages, 7 figure
Low Resistance Polycrystalline Diamond Thin Films Deposited by Hot Filament Chemical Vapour Deposition
Polycrystalline diamond thin films with outgrowing diamond (OGD) grains were deposited onto silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemical vapour deposition (HFCVD) reactor with a range of gas flow rates. X-ray diffraction (XRD) and SEM showed polycrystalline diamond structure with a random orientation. Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth was observed in flowerish character at high gas flow rates. Isolated single crystals with little openings appeared at various stages at low gas flow rates. Thus, changing gas flow rates had a beneficial influence on the grain size, growth rate and electrical resistivity. CVD diamond films gave an excellent performance for medium film thickness with relatively low electrical resistivity and making them potentially useful in many industrial applications
Invariant, super and quasi-martingale functions of a Markov process
We identify the linear space spanned by the real-valued excessive functions
of a Markov process with the set of those functions which are quasimartingales
when we compose them with the process. Applications to semi-Dirichlet forms are
given. We provide a unifying result which clarifies the relations between
harmonic, co-harmonic, invariant, co-invariant, martingale and co-martingale
functions, showing that in the conservative case they are all the same.
Finally, using the co-excessive functions, we present a two-step approach to
the existence of invariant probability measures
Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes.
Background: MicroRNAs (miRNAs) in circulation have emerged as promising biomarkers. In this study, we aimed to identify a circulating miRNA signature for osteoarthritis (OA) patients and in combination with bioinformatics analysis to evaluate the utility of selected differentially expressed miRNAs in the serum as potential OA biomarkers. Methods: Serum samples were collected from 12 primary OA patients, and 12 healthy individuals were screened using the Agilent Human miRNA Microarray platform interrogating 2549 miRNAs. Receiver Operating Characteristic (ROC) curves were constructed to evaluate the diagnostic performance of the deregulated miRNAs. Expression levels of selected miRNAs were validated by quantitative real-time PCR (qRT-PCR) in all serum and in articular cartilage samples from OA patients (n = 12) and healthy individuals (n = 7). Bioinformatics analysis was used to investigate the involved pathways and target genes for the above miRNAs. Results: We identified 279 differentially expressed miRNAs in the serum of OA patients compared to controls. Two hundred and five miRNAs (73.5%) were upregulated and 74 (26.5%) downregulated. ROC analysis revealed that 77 miRNAs had area under the curve (AUC) > 0.8 and p < 0.05. Bioinformatics analysis in the 77 miRNAs revealed that their target genes were involved in multiple signaling pathways associated with OA, among which FoxO, mTOR, Wnt, pI3K/akt, TGF-β signaling pathways, ECM-receptor interaction, and fatty acid biosynthesis. qRT-PCR validation in seven selected out of the 77 miRNAs revealed 3 significantly downregulated miRNAs (hsa-miR-33b-3p, hsa-miR-671-3p, and hsa-miR-140-3p) in the serum of OA patients, which were in silico predicted to be enriched in pathways involved in metabolic processes. Target-gene analysis of hsa-miR-140-3p, hsa-miR-33b-3p, and hsa-miR-671-3p revealed that InsR and IGFR1 were common targets of all three miRNAs, highlighting their involvement in regulation of metabolic processes that contribute to OA pathology. Hsa-miR-140-3p and hsa-miR-671-3p expression levels were consistently downregulated in articular cartilage of OA patients compared to healthy individuals. Conclusions: A serum miRNA signature was established for the first time using high density resolution miR-arrays in OA patients. We identified a three-miRNA signature, hsa-miR-140-3p, hsa-miR-671-3p, and hsa-miR-33b-3p, in the serum of OA patients, predicted to regulate metabolic processes, which could serve as a potential biomarker for the evaluation of OA risk and progression.Peer reviewedFinal Published versio
Synchronization modulation increases transepithelial potentials in MDCK monolayers through Na/K pumps
Peer reviewedPublisher PD
Multi-step self-guided pathways for shape-changing metamaterials
Multi-step pathways, constituted of a sequence of reconfigurations, are
central to a wide variety of natural and man-made systems. Such pathways
autonomously execute in self-guided processes such as protein folding and
self-assembly, but require external control in macroscopic mechanical systems,
provided by, e.g., actuators in robotics or manual folding in origami. Here we
introduce shape-changing mechanical metamaterials, that exhibit self-guided
multi-step pathways in response to global uniform compression. Their design
combines strongly nonlinear mechanical elements with a multimodal architecture
that allows for a sequence of topological reconfigurations, i.e., modifications
of the topology caused by the formation of internal self-contacts. We realized
such metamaterials by digital manufacturing, and show that the pathway and
final configuration can be controlled by rational design of the nonlinear
mechanical elements. We furthermore demonstrate that self-contacts suppress
pathway errors. Finally, we demonstrate how hierarchical architectures allow to
extend the number of distinct reconfiguration steps. Our work establishes
general principles for designing mechanical pathways, opening new avenues for
self-folding media, pluripotent materials, and pliable devices in, e.g.,
stretchable electronics and soft robotics.Comment: 16 pages, 3 main figures, 10 extended data figures. See
https://youtu.be/8m1QfkMFL0I for an explanatory vide
Iron oxidation at low temperature (260–500 C) in air and the effect of water vapor
The oxidation of iron has been studied at low temperatures (between 260 and 500 C) in dry air or air with 2 vol% H2O, in the framework of research on dry corrosion of nuclear waste containers during long-term interim storage. Pure iron is regarded as a model material for low-alloyed steel. Oxidation tests were performed in a thermobalance (up to 250 h) or in a laboratory furnace (up to 1000 h). The oxide scales formed were characterized using SEM-EDX, TEM, XRD, SIMS and EBSD techniques. The parabolic rate constants deduced from microbalance experiments were found to be in good agreement with the few existing values of the literature. The presence of water vapor in air was found to strongly influence the transitory stages of the kinetics. The entire structure of the oxide scale was composed of an internal duplex magnetite scale made of columnar grains and an external hematite scale made of equiaxed grains. 18O tracer experiments performed at 400 C allowed to propose a growth mechanism of the scale
- …
