2,717 research outputs found
Drinfeld twist and symmetric Bethe vectors of the open XYZ chain with non-diagonal boundary terms
With the help of the Drinfeld twist or factorizing F-matrix for the
eight-vertex solid-on-solid (SOS) model, we find that in the F-basis provided
by the twist the two sets of pseudo-particle creation operators simultaneously
take completely symmetric and polarization free form. This allows us to obtain
the explicit and completely symmetric expressions of the two sets of Bethe
states of the model.Comment: Latex file, 25 page
Evolution of asexual and sexual reproduction in the aspergilli
Aspergillus nidulans has long-been used as a model organism to gain insights into the genetic basis of asexual and sexual developmental processes both in
other members of the genus Aspergillus, and filamentous fungi in general. Paradigms have been established concerning the regulatory mechanisms of conidial
development. However, recent studies have shown considerable genome divergence in the fungal kingdom, questioning the general applicability of findings from
Aspergillus, and certain longstanding evolutionary theories have been questioned. The phylogenetic distribution of key regulatory elements of asexual reproduction in
A. nidulans was investigated in a broad taxonomic range of fungi. This revealed that some proteins were well conserved in the Pezizomycotina (e.g. AbaA, FlbA, FluG,
NsdD, MedA, and some velvet proteins), suggesting similar developmental roles. However, other elements (e.g. BrlA) had a more restricted distribution solely in the
Eurotiomycetes, and it appears that the genetic control of sporulation seems to be more complex in the aspergilli than in some other taxonomic groups of the
Pezizomycotina. The evolution of the velvet protein family is discussed based on the history of expansion and contraction events in the early divergent fungi. Heterologous expression of the A. nidulans abaA gene in Monascus ruber failed to induce development of complete conidiophores as seen in the aspergilli, but did result in
increased conidial production. The absence of many components of the asexual developmental pathway from members of the Saccharomycotina supports the hypothesis
that differences in the complexity of their spore formation is due in part to the increased diversity of the sporulation machinery evident in the Pezizomycotina. Investigations were also made into the evolution of sex and sexuality in the aspergilli. MAT loci were identified from the heterothallic Aspergillus (Emericella) heterothallicus
and Aspergillus (Neosartorya) fennelliae and the homothallic Aspergillus pseudoglaucus (=Eurotium repens). A consistent architecture of the MAT locus was seen in
these and other heterothallic aspergilli whereas much variation was seen in the arrangement of MAT loci in homothallic aspergilli. This suggested that it is most likely that
the common ancestor of the aspergilli exhibited a heterothallic breeding system. Finally, the supposed prevalence of asexuality in the aspergilli was examined. Investigations were made using A. clavatus as a representative ‘asexual’ species. It was possible to induce a sexual cycle in A. clavatus given the correct MAT1-1 and
MAT1-2 partners and environmental conditions, with recombination confirmed utilising molecular markers. This indicated that sexual reproduction might be possible in
many supposedly asexual aspergilli and beyond, providing general insights into the nature of asexuality in fungi.National Natural Science Foundation of China 31601446National Research Foundation of Korea 2016010945Intelligent Synthetic Biology Center of Global Frontier Projects 2015M3A6A8065838Biotechnology and Biological Sciences Research CouncilGovernment of IraqMinisterio de Economía y Competitividad BIO2015-67148-
Viewing the efficiency of chaos control
This paper aims to cast some new light on controlling chaos using the OGY-
and the Zero-Spectral-Radius methods. In deriving those methods we use a
generalized procedure differing from the usual ones. This procedure allows us
to conveniently treat maps to be controlled bringing the orbit to both various
saddles and to sources with both real and complex eigenvalues. We demonstrate
the procedure and the subsequent control on a variety of maps. We evaluate the
control by examining the basins of attraction of the relevant controlled
systems graphically and in some cases analytically
Chaotic dynamics of cold atoms in far-off-resonant donut beam
We describe the classical two dimensinal nonlinear dynamics of cold atoms in
far-off-resonant donut beams. We show that there chaotic dynamics exists for
charge greater than unity, when the intensity of the beam is periodically
modulated. The two dimensional distributions of atoms in plane for
charge two are simulated. We show that the atoms will acumulate on several ring
regions when the system enters to regime of global chaos.Comment: 8 pages, 8 figure
LRRK2 A419V is not associated with Parkinson's disease in different Chinese populations
10.1371/journal.pone.0036123PLoS ONE77
Electromagnetic Response of Layered Superconductors with Broken Lattice Inversion Symmetry
We investigate the macroscopic effects of charge density waves (CDW) and
superconductivity in layered superconducting systems with broken lattice
inversion symmetry (allowing for piezoelectricity) such as two dimensional (2D)
transition metal dichalcogenides (TMD). We work with the low temperature time
dependent Ginzburg-Landau theory and study the coupling of lattice distortions
and low energy CDW collective modes to the superconducting order parameter in
the presence of electromagnetic fields. We show that superconductivity and
piezoelectricity can coexist in these singular metals. Furthermore, our study
indicates the nature of the quantum phase transition between a commensurate CDW
phase and the stripe phase that has been observed as a function of applied
pressure.Comment: 9 pages, 1 figure. Final version. Accepted in Phys.Rev.
Cosmic microwave background and large scale structure limits on the interaction between dark matter and baryons
We study the effect on the cosmic microwave background (CMB) anisotropy and
large scale structure (LSS) power spectrum of a scattering interaction between
cold dark matter and baryons. This scattering alters the CMB anisotropy and LSS
spectrum through momentum transfer between the cold dark matter particles and
the baryons. We find that current CMB observations can put an upper limit on
the scattering cross section which is comparable with or slightly stronger than
previous disk heating constraints at masses greater than 1 GeV, and much
stronger at smaller masses. When large-scale structure constraints are added to
the CMB limits, our constraint is more stringent than this previous limit at
all masses. In particular, a dark matter-baryon scattering cross section
comparable to the ``Spergel-Steinhardt'' cross section is ruled out for dark
matter mass greater than 1 GeV.Comment: 8 pages, 2 figures, use RevTeX4, submitted to PRD replaced with
revised versio
Collective Modes of Soliton-Lattice States in Double-Quantum-Well Systems
In strong perpendicular magnetic fields double-quantum-well systems can
sometimes occur in unusual broken symmetry states which have interwell phase
coherence in the absence of interwell hopping. When hopping is present in such
systems and the magnetic field is tilted away from the normal to the quantum
well planes, a related soliton-lattice state can occur which has kinks in the
dependence of the relative phase between electrons in opposite layers on the
coordinate perpendicular to the in-plane component of the magnetic field. In
this article we evaluate the collective modes of this soliton-lattice state in
the generalized random-phase aproximation. We find that, in addition to the
Goldstone modes associated with the broken translational symmetry of the
soliton-lattice state, higher energy collective modes occur which are closely
related to the Goldstone modes present in the spontaneously phase-coherent
state. We study the evolution of these collective modes as a function of the
strength of the in-plane magnetic field and comment on the possibility of using
the in-plane field to generate a finite wave probe of the spontaneously
phase-coherent state.Comment: REVTEX, 37 pages (text) and 15 uuencoded postscript figure
Building the cosmic distance scale: from Hipparcos to Gaia
Hipparcos, the first ever experiment of global astrometry, was launched by
ESA in 1989 and its results published in 1997 (Perryman et al., Astron.
Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho
catalogues, ESA SP-1200, 1997). A new reduction was later performed using an
improved satellite attitude reconstruction leading to an improved accuracy for
stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys.
439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007).
The Hipparcos Catalogue provided an extended dataset of very accurate
astrometric data (positions, trigonometric parallaxes and proper motions),
enlarging by two orders of magnitude the quantity and quality of distance
determinations and luminosity calibrations. The availability of more than 20000
stars with a trigonometric parallax known to better than 10% opened the way to
a drastic revision of our 3-D knowledge of the solar neighbourhood and to a
renewal of the calibration of many distance indicators and age estimations. The
prospects opened by Gaia, the next ESA cornerstone, planned for launch in June
2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more
dramatic: a billion objects with systematic and quasi simultaneous astrometric,
spectrophotometric and spectroscopic observations, about 150 million stars with
expected distances to better than 10%, all over the Galaxy. All stellar
distance indicators, in very large numbers, will be directly measured,
providing a direct calibration of their luminosity and making possible detailed
studies of the impacts of various effects linked to chemical element
abundances, age or cluster membership. With the help of simulations of the data
expected from Gaia, obtained from the mission simulator developed by DPAC, we
will illustrate what Gaia can provide with some selected examples.Comment: 16 pages, 16 figures, Conference "The Fundamental Cosmic Distance
scale: State of the Art and the Gaia perspective, 3-6 May 2011, INAF,
Osservatorio Astronomico di Capodimonte, Naples. Accepted for publication in
Astrophysics & Space Scienc
- …
