162,822 research outputs found

    Interlacing Log-concavity of the Boros-Moll Polynomials

    Full text link
    We introduce the notion of interlacing log-concavity of a polynomial sequence {Pm(x)}m0\{P_m(x)\}_{m\geq 0}, where Pm(x)P_m(x) is a polynomial of degree m with positive coefficients ai(m)a_{i}(m). This sequence of polynomials is said to be interlacing log-concave if the ratios of consecutive coefficients of Pm(x)P_m(x) interlace the ratios of consecutive coefficients of Pm+1(x)P_{m+1}(x) for any m0m\geq 0. Interlacing log-concavity is stronger than the log-concavity. We show that the Boros-Moll polynomials are interlacing log-concave. Furthermore we give a sufficient condition for interlacing log-concavity which implies that some classical combinatorial polynomials are interlacing log-concave.Comment: 10 page

    Proof of a Conjecture of Hirschhorn and Sellers on Overpartitions

    Full text link
    Let pˉ(n)\bar{p}(n) denote the number of overpartitions of nn. It was conjectured by Hirschhorn and Sellers that \bar{p}(40n+35)\equiv 0\ ({\rm mod\} 40) for n0n\geq 0. Employing 2-dissection formulas of quotients of theta functions due to Ramanujan, and Hirschhorn and Sellers, we obtain a generating function for pˉ(40n+35)\bar{p}(40n+35) modulo 5. Using the (p,k)(p, k)-parametrization of theta functions given by Alaca, Alaca and Williams, we give a proof of the congruence \bar{p}(40n+35)\equiv 0\ ({\rm mod\} 5). Combining this congruence and the congruence \bar{p}(4n+3)\equiv 0\ ({\rm mod\} 8) obtained by Hirschhorn and Sellers, and Fortin, Jacob and Mathieu, we give a proof of the conjecture of Hirschhorn and Sellers.Comment: 11 page

    Doppler Amplification of Motion of a Trapped Three-Level Ion

    Full text link
    The system of a trapped ion translationally excited by a blue-detuned near-resonant laser, sometimes described as an instance of a phonon laser, has recently received attention as interesting in its own right and for its application to non-destructive readout of internal states of non-fluorescing ions. Previous theoretical work has been limited to cases of two-level ions. Here, we perform simulations to study the dynamics of a phonon laser involving the Λ\Lambda-type ^{138}\mbox{Ba}^{+} ion, in which coherent population trapping effects lead to different behavior than in the previously studied cases. We also explore optimization of the laser parameters to maximize amplification gain and signal-to-noise ratio for internal state readout
    corecore