104,174 research outputs found
Monomial Testing and Applications
In this paper, we devise two algorithms for the problem of testing
-monomials of degree in any multivariate polynomial represented by a
circuit, regardless of the primality of . One is an time
randomized algorithm. The other is an time deterministic
algorithm for the same -monomial testing problem but requiring the
polynomials to be represented by tree-like circuits. Several applications of
-monomial testing are also given, including a deterministic
upper bound for the -set -packing problem.Comment: 17 pages, 4 figures, submitted FAW-AAIM 2013. arXiv admin note:
substantial text overlap with arXiv:1302.5898; and text overlap with
arXiv:1007.2675, arXiv:1007.2678, arXiv:1007.2673 by other author
On The Expected Photon Spectrum in B -> X_s + gamma and Its Uses
Measuring the photon energy spectrum in radiative B decays provides essential
help for gaining theoretical control over semileptonic B transitions. The
hadronic recoil mass distribution in B -> X_u \ell\nu promises the best
environment for determining |V_ub|. The theoretical uncertainties are largest
in the domain of low values of the lepton pair mass q^2. Universality relations
allow to describe this domain reliably in terms of the photon spectrum in B ->
X_s + \gamma. A method is proposed to incorporate 1/m_b corrections into this
relation. The low-E_\gamma tail in radiative decays is important in the context
of extracting |V_ub|. We argue that CLEO's recent fit to the spectrum
underestimates the fraction of the photon spectrum below 2 GeV. Potentially
significant uncertainties enter in the theoretical evaluation of the integrated
end-point lepton spectrum or the B -> X_u \ell\nu width with a too high value
of the lower cut on q^2 in alternative approaches to |V_ub|.Comment: 24 pages, 6 figures, LaTeX. Revised: Complete version. Numerical
predictions are improved and the estimate for the decay fraction revised. The
theoretical expectations for the decay fraction and the spectrum itself are
given on the plot
Maximum a Posteriori Adaptation of Network Parameters in Deep Models
We present a Bayesian approach to adapting parameters of a well-trained
context-dependent, deep-neural-network, hidden Markov model (CD-DNN-HMM) to
improve automatic speech recognition performance. Given an abundance of DNN
parameters but with only a limited amount of data, the effectiveness of the
adapted DNN model can often be compromised. We formulate maximum a posteriori
(MAP) adaptation of parameters of a specially designed CD-DNN-HMM with an
augmented linear hidden networks connected to the output tied states, or
senones, and compare it to feature space MAP linear regression previously
proposed. Experimental evidences on the 20,000-word open vocabulary Wall Street
Journal task demonstrate the feasibility of the proposed framework. In
supervised adaptation, the proposed MAP adaptation approach provides more than
10% relative error reduction and consistently outperforms the conventional
transformation based methods. Furthermore, we present an initial attempt to
generate hierarchical priors to improve adaptation efficiency and effectiveness
with limited adaptation data by exploiting similarities among senones
Lifshitz Transition in the Two Dimensional Hubbard Model
Using large-scale dynamical cluster quantum Monte Carlo simulations, we study
the Lifshitz transition of the two dimensional Hubbard model with
next-nearest-neighbor hopping (), chemical potential and temperature as
control parameters. At , we identify a line of Lifshitz transition
points associated with a change of the Fermi surface topology at zero
temperature. In the overdoped region, the Fermi surface is complete and
electron-like; across the Lifshitz transition, the Fermi surface becomes
hole-like and develops a pseudogap. At (or very close to) the Lifshitz
transition points, a van Hove singularity in the density of states crosses the
Fermi level. The van Hove singularity occurs at finite doping due to
correlation effects, and becomes more singular when becomes more negative.
The resulting temperature dependence on the bare d-wave pairing susceptibility
close to the Lifshitz points is significantly different from that found in the
traditional van Hove scenarios. Such unambiguous numerical observation of the
Lifshitz transition at extends our understanding of the quantum
critical region in the phase diagram, and shines lights on future
investigations of the nature of the quantum critical point in the two
dimensional Hubbard model.Comment: 9 pages, 8 figures, accepted for publication in Physics Review
Electronic Structure of New AFFeAs Prototype of Iron Arsenide Superconductors
This work is provoked by recent discovery of new class prototype systems
AFFeAs (A=Sr,Ca) of novel layered ironpnictide High-Tc superconductors
(Tc=36K). Here we report ab initio LDA results for electronic structure of the
AFFeAs systems. We provide detailed comparison between electronic properties of
both new systems and reference LaOFeAs (La111) compound. In the vicinity of the
Fermi level all three systems have essentially the same band dispersions.
However for iron fluoride systems F(2p) states were found to be separated in
energy from As(4p) ones in contrast to La111, where O(2p) states strongly
overlaps with As(4p). Thus it should be more plausible to include only Fe(3d)
and As(4p) orbitals into a realistic noninteracting model than for La111.
Moreover Sr substitution with smaller ionic radius Ca in AFFeAs materials leads
to a lattice contruction and stronger Fe(3d)-As(4p) hybridization resulting in
smaller value of the density of states at the Fermi level in the case of Ca
compound. So to some extend Ca system reminds RE111 with later Rare Earths.
However Fermi surface of new fluorides is found to be nearly perfect
two-dimensional. Also we do not expect strong dependence of superconducting
properties with respect to different types of A substitutes.Comment: 5 pages, 4 figure
Stability of C20 fullerene chains
The stability of (C20)N chains with N = 3 - 7 is analyzed by numerical
simulation using a tight-binding potential and molecular dynamics. Various
channels of losing the cluster-chain structure of the (C20)N complexes are
observed, including the decay of C20 clusters, their coalescence, and the
separation of one C20 fullerene from the chain.Comment: To appear in JETP Letter
Numerical Study of the Spin Hall Conductance in the Luttinger Model
We present first numerical studies of the disorder effect on the recently
proposed intrinsic spin Hall conductance in a three dimensional (3D) lattice
Luttinger model. The results show that the spin Hall conductance remains finite
in a wide range of disorder strength, with large fluctuations. The
disorder-configuration-averaged spin Hall conductance monotonically decreases
with the increase of disorder strength and vanishes before the Anderson
localization takes place. The finite-size effect is also discussed.Comment: 4 pages, 4 figures; the final version appearing in PR
Global polarization of QGP in non-central heavy ion collisions at high energies
Due to the presence of a large orbital angular momentum of the parton system
produced at the early stage of non-central heavy-ion collisions, quarks and
anti-quarks are shown to be polarized in the direction opposite to the reaction
plane which is determined by the impact-parameter and the beam momentum. The
global quark polarization via elastic scattering was first calculated in an
effective static potential model, then using QCD at finite temperature with the
hard-thermal-loop re-summed gluon propagator. The measurable consequences are
discussed. Global hyperon polarization from the hadronization of polarized
quarks are predicted independent of the hadronization scenarios. It has also
been shown that the global polarization of quarks and anti-quarks leads also to
spin alignment of vector mesons. Dedicated measurements at RHIC are underway
and some of the preliminary results are obtained. In this presentation, the
basic idea and main results of global quark polarization are presented. The
direct consequences such as global hyperon polarization and spin alignment are
summarized.Comment: plenary talk at the 19th International Conference on
Ultra-Relativistic Nucleus-Nucleus Collisions (QM2006), Shanghai, China,
November 14-20, 200
Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging
A size-dependent strain relaxation and its effects on the optical properties of InGaN/GaN multiple quantum wells (QWs) in micro-pillars have been investigated through a combination of high spatial resolution cathodoluminescence (CL) hyperspectral imaging and numerical modeling. The pillars have diameters (d) ranging from 2 to 150 μm and were fabricated from a III-nitride light-emitting diode (LED) structure optimized for yellow-green emission at ∼560 nm. The CL mapping enables us to investigate strain relaxation in these pillars on a sub-micron scale and to confirm for the first time that a narrow (≤2 μm) edge blue-shift occurs even for the large InGaN/GaN pillars (d > 10 μm). The observed maximum blue-shift at the pillar edge exceeds 7 nm with respect to the pillar centre for the pillars with diameters in the 2–16 μm range. For the smallest pillar (d = 2 μm), the total blue-shift at the edge is 17.5 nm including an 8.2 nm “global” blue-shift at the pillar centre in comparison with the unetched wafer. By using a finite element method with a boundary condition taking account of a strained GaN buffer layer which was neglected in previous simulation works, the strain distribution in the QWs of these pillars was simulated as a function of pillar diameter. The blue-shift in the QWs emission wavelength was then calculated from the strain-dependent changes in piezoelectric field, and the consequent modification of transition energy in the QWs. The simulation and experimental results agree well, confirming the necessity for considering the strained buffer layer in the strain simulation. These results provide not only significant insights into the mechanism of strain relaxation in these micro-pillars but also practical guidance for design of micro/nano LEDs
- …
