240,740 research outputs found

    Large-N scaling behavior of the quantum fisher information in the Dicke model

    Full text link
    Quantum Fisher information (QFI) of the reduced two-atom state is employed to capture the quantum criticality of the superradiant phase transition in the Dicke model in the infinite size and finite-NN systems respectively. The analytical expression of the QFI of its ground state is evaluated explicitly. And finite-size scaling analysis is performed with the large accessible system size due to the effective bosonic coherent-state technique. We also investigate the large-size scaling behavior of the scaled QFI of the reduced NN-atom state and show the accurate exponent.Comment: 6pages,2figure

    Generalized rotating-wave approximation to biased qubit-oscillator systems

    Full text link
    The generalized rotating-wave approximation with counter-rotating interactions has been applied to a biased qubit-oscillator system. Analytical expressions are explicitly given for all eigenvalues and eigenstates. For a flux qubit coupled to superconducting oscillators, spectra calculated by our approach are in excellent agreement with experiment. Calculated energy levels for a variety of biases also agree well with those obtained via exact diagonalization for a wide range of coupling strengths. Dynamics of the qubit has also been examined, and results lend further support to the validity of the analytical approximation employed here. Our approach can be readily implemented and applied to superconducting qubit-oscillator experiments conducted currently and in the near future with a biased qubit and for all accessible coupling strengths

    Quantum phase transition in the one-dimensional period-two and uniform compass model

    Full text link
    Quantum phase transition in the one-dimensional period-two and uniform quantum compass model are studied by using the pseudo-spin transformation method and the trace map method. The exact solutions are presented, the fidelity, the nearest-neighbor pseudo-spin entanglement, spin and pseudo-spin correlation functions are then calculated. At the critical point, the fidelity and its susceptibility change substantially, the gap of pseudo-spin concurrence is observed, which scales as 1/N1/N (N is system size). The spin correlation functions show smooth behavior around the critical point. In the period-two chain, the pseudo-spin correlation functions exhibit a oscillating behavior, which is absent in the unform chain. The divergent correlation length at the critical point is demonstrated in the general trend for both cases.Comment: 5 pages, 6 figure

    Quantum phase transitions in coupled two-level atoms in a single-mode cavity

    Full text link
    The dipole-coupled two-level atoms(qubits) in a single-mode resonant cavity is studied by extended bosonic coherent states. The numerically exact solution is presented. For finite systems, the first-order quantum phase transitions occur at the strong interatomic interaction. Similar to the original Dicke model, this system exhibits a second-order quantum phase transition from the normal to the superradiant phases. Finite-size scaling for several observables, such as the average fidelity susceptibility, the order parameter, and concurrence are performed for different interatomic interactions. The obtained scaling exponents suggest that interatomic interactions do not change the universality class.Comment: 13 pages, 5 figure

    Effect of size, shape, and surface modification on cytotoxicity of gold nanoparticles to human Hep-2 and canine MDCK cells

    Get PDF
    There have been increasing interests in applying gold nanoparticles in biological research, drug delivery, and therapy. As the interaction of gold nanoparticles with cells relies on properties of nanoparticles, the cytotoxicity is complex and still under debating. In this work, we investigate the cytotoxicity of gold nanoparticles of different encapsulations, surface charge states, sizes and shapes to both human HEp-2 and canine MDCK cells. We found that cetyltrimethylammonium-bromide- (CTAB-) encapsulated gold nanorods (GNRs) were relatively higher cytotoxic than GNRs undergone further polymer coating and citrate stabilized gold nanospheres (GNSs). The toxicity of CTAB-encapsulated GNRs was mainly caused by CTAB on GNRs’ surface but not free CTAB in the solution. No obvious difference was found among GNRs of different aspect ratios. Time-lapse study revealed that cell death caused by GNRs occurred predominately within one hour through apoptosis, whereas cell death by free CTAB was in a time- and dose-dependent manner. Both positively and negatively surface-charged polymer-coated GNRs (PSS-GNRs and PAH-PSS-GNRs) showed similar levels of cytotoxic, suggesting the significance of surface functionality rather than surface charge in this case
    corecore