4,237 research outputs found
Comparison of blade loads of fixed and free yawing wind turbine
The self regulating composite bearingless wind turbine utilizes an automatic pitch control concept and a completely unrestrained yawing degree of freedom. Aerodynamic moments caused by skewed flow provide the control to align the wind turbine with the wind. Model tests demonstrated the feasibility of the concept and analytical studies showed the free system to experience lower blade loads compared to the fixed system
Investigation of a bearingless helicopter rotor concept having a composite primary structure
Experimental and analytical investigations were conducted to evaluate a bearingless helicopter rotor concept (CBR) made possible through the use of the specialized nonisotropic properties of composite materials. The investigation was focused on four principal areas which were expected to answer important questions regarding the feasibility of this concept. First, an examination of material properties was made to establish moduli, ultimate strength, and fatigue characteristics of unidirectional graphite/epoxy, the composite material selected for this application. The results confirmed the high bending modulus and strengths and low shear modulus expected of this material, and demonstrated fatigue properties in torsion which make this material ideally suited for the CBR application. Second, a dynamically scaled model was fabricated and tested in the low speed wind tunnel to explore the aeroelastic characteristics of the CBR and to explore various concepts relative to the method of blade pitch control. Two basic control configurations were tested, one in which pitch flap coupling could occur and another which eliminated all coupling. It was found that both systems could be operated successfully at simulated speeds of 180 knots; however, the configuration with coupling present revealed a potential for undesirable aeroelastic response. The uncoupled configuration behaved generally as a conventional hingeless rotor and was stable for all conditions tested
It Could Not Be Seen Because It Could Not Be Believed on June 30, 2013
Nineteen Prescott Fire Department, Granite Mountain Hot Shot
(GMHS) wildland firefighters (WF) perished in Arizona in June 2013 Yarnell Hill
Fire, an inexplicable wildland fire disaster. In complex wildland fires, sudden,
dynamic changes in human factors and fire conditions can occur, thus mistakes can
be unfortunately fatal. Individual and organizational faults regarding the predictable,
puzzling, human failures that will result in future WF deaths are
addressed. The GMHS were individually, then collectively fixated with abandoning
their Safety Zone to reengage, committing themselves at the worst possible
time, to relocate to another Safety Zone - a form of collective tunnel vision. Our
goal is to provoke meaningful discussion toward improved wildland firefighter
safety with practical solutions derived from a long-established wildland firefighter
expertise/performance in a fatality-prone profession. Wildfire fatalities are
unavoidable, hence these proposals, applied to ongoing training, can significantly
contribute to other well-thought-out and validated measures to reduce them
Book Reviews
Book Reviews of: G. de Bertier de Sauvigny, La France et les français vus par les voyageurs américains, 1814-1948 (Flammarion, 1982-1985) Mary Midgley, Wickedness: A Philosophical Essay (Routledge & Kegan Paul, 1984) Jerome Bruner, Actual Minds, Possible Worlds (Harvard University Press, 1986
Fitting theories of nuclear binding energies
In developing theories of nuclear binding energy such as density-functional
theory, the effort required to make a fit can be daunting due to the large
number of parameters that may be in the theory and the large number of nuclei
in the mass table. For theories based on the Skyrme interaction, the effort can
be reduced considerably by using the singular value decomposition to reduce the
size of the parameter space. We find that the sensitive parameters define a
space of dimension four or so, and within this space a linear refit is adequate
for a number of Skyrme parameters sets from the literature. We do not find
marked differences in the quality of the fit between the SLy4, the Bky4 and SkP
parameter sets. The r.m.s. residual error in even-even nuclei is about 1.5 MeV,
half the value of the liquid drop model. We also discuss an alternative norm
for evaluating mass fits, the Chebyshev norm. It focuses attention on the cases
with the largest discrepancies between theory and experiment. We show how it
works with the liquid drop model and make some applications to models based on
Skyrme energy functionals. The Chebyshev norm seems to be more sensitive to new
experimental data than the root-mean-square norm. The method also has the
advantage that candidate improvements to the theories can be assessed with
computations on smaller sets of nuclei.Comment: 17 pages and 4 figures--version encorporates referee's comment
Nonparametric Markovian Learning of Triggering Kernels for Mutually Exciting and Mutually Inhibiting Multivariate Hawkes Processes
In this paper, we address the problem of fitting multivariate Hawkes
processes to potentially large-scale data in a setting where series of events
are not only mutually-exciting but can also exhibit inhibitive patterns. We
focus on nonparametric learning and propose a novel algorithm called MEMIP
(Markovian Estimation of Mutually Interacting Processes) that makes use of
polynomial approximation theory and self-concordant analysis in order to learn
both triggering kernels and base intensities of events. Moreover, considering
that N historical observations are available, the algorithm performs
log-likelihood maximization in operations, while the complexity of
non-Markovian methods is in . Numerical experiments on simulated
data, as well as real-world data, show that our method enjoys improved
prediction performance when compared to state-of-the art methods like MMEL and
exponential kernels
A dependent nominal type theory
Nominal abstract syntax is an approach to representing names and binding
pioneered by Gabbay and Pitts. So far nominal techniques have mostly been
studied using classical logic or model theory, not type theory. Nominal
extensions to simple, dependent and ML-like polymorphic languages have been
studied, but decidability and normalization results have only been established
for simple nominal type theories. We present a LF-style dependent type theory
extended with name-abstraction types, prove soundness and decidability of
beta-eta-equivalence checking, discuss adequacy and canonical forms via an
example, and discuss extensions such as dependently-typed recursion and
induction principles
A New Method of Synthesizing Black Birnessite Nanoparticles: From Brown to Black Birnessite with Nanostructures
A new method for preparing black birnessite nanoparticles is introduced. The initial synthesis process resembles the classical McKenzie method of preparing brown birnessite except for slower cooling and closing the system from the ambient air. Subsequent process, including wet-aging at 7◦C for 48 hours, overnight freezing, and lyophilization, is shown to convert the brown birnessite into black birnessite with complex nanomorphology with folded sheets and spirals. Characterization of the product is performed by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermogravimetric analysis (TGA), and N2 adsorption (BET) techniques. Wet-aging and lyophilization times are shown to affect the architecture of the product. XRD patterns show a single phase corresponding to a semicrystalline birnessite-based manganese oxide. TEM studies suggest its fibrous and petal-like structures. The HRTEM images at 5 and 10 nm length scales reveal the fibrils in folding sheets and also show filamentary breaks. The BET surface area of this nanomaterial was found to be 10.6m2/g. The TGA measurement demonstrated that it possessed an excellent thermal stability up to 400◦C. Layerstructured black birnessite nanomaterial containing sheets, spirals, and filamentary breaks can be produced at low temperature (−49◦C) from brown birnessite without the use of cross-linking reagents
- …
