7,641 research outputs found
Flavor SU(3) symmetry and QCD factorization in and decays
Using flavor SU(3) symmetry, we perform a model-independent analysis of
charmless decays. All the relevant
topological diagrams, including the presumably subleading diagrams, such as the
QCD- and EW-penguin exchange diagrams and flavor-singlet weak annihilation
ones, are introduced. Indeed, the QCD-penguin exchange diagram turns out to be
important in understanding the data for penguin-dominated decay modes. In this
work we make efforts to bridge the (model-independent but less quantitative)
topological diagram or flavor SU(3) approach and the (quantitative but somewhat
model-dependent) QCD factorization (QCDF) approach in these decays, by
explicitly showing how to translate each flavor SU(3) amplitude into the
corresponding terms in the QCDF framework. After estimating each flavor SU(3)
amplitude numerically using QCDF, we discuss various physical consequences,
including SU(3) breaking effects and some useful SU(3) relations among decay
amplitudes of and .Comment: 47 pages, 3 figures, 28 table
Can stellar mass black holes be quark stars?
We investigate the possibility that stellar mass black holes, with masses in
the range of and , respectively, could be in fact
quark stars in the Color-Flavor-Locked (CFL) phase. Depending on the value of
the gap parameter, rapidly rotating CFL quark stars can achieve much higher
masses than standard neutron stars, thus making them possible stellar mass
black hole candidates. Moreover, quark stars have a very low luminosity and a
completely absorbing surface - the infalling matter on the surface of the quark
star is converted into quark matter. A possibility of distinguishing CFL quark
stars from stellar mass black holes could be through the study of thin
accretion disks around rapidly rotating quark stars and Kerr type black holes,
respectively. Furthermore, we show that the radiation properties of accretion
disks around black holes and CFL quark stars are also very similar. However,
strange stars exhibit a low luminosity, but high temperature bremsstrahlung
spectrum, which, in combination with the emission properties of the accretion
disk, may be the key signature to differentiate massive strange stars from
black hole.Comment: 27 pages, 5 figures, accepted for publication in MNRA
Forward-backward Asymmetry and Branching Ratio of B \rar K_1 \ell^+ \ell^- Transition in Supersymmetric Models
The mass eigen states and are mixture of the strange
members of two axial-vector SU(3) octet, and .
Taking into account this mixture, the forward-backward asymmetry and branching
ratio of B \rar K_1(1270,1400) \ell^+ \ell^- transitions are studied in the
framework of different supersymmetric models. It is found that the results have
considerable deviation from the standard model predictions. Any measurement of
these physical observables and their comparison with the results obtained in
this paper can give useful information about the nature of interactions beyond
the standard model.Comment: 14 pages, 4 figure
Residential Assessment Instrument 2.0 in care planning for residents in nursing homes
published_or_final_versio
Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al
Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g−1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research
An assessment of validity and responsiveness of generic measures of health-related quality of life in hearing impairment
This article is made available through the Brunel Open Access Publishing Fund. This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, distribution,
and reproduction in any medium, provided the original
author(s) and the source are credited.Purpose: This review examines psychometric performance of three widely used generic preference-based measures, that is, EuroQol 5 dimensions (EQ-5D), Health Utility Index 3 (HUI3) and Short-form 6 dimensions (SF-6D) in patients with hearing impairments.
Methods: A systematic search was undertaken to identify studies of patients with hearing impairments where health state utility values were measured and reported. Data were extracted and analysed to assess the reliability, validity (known group differences and convergent validity) and responsiveness of the measures across hearing impairments.
Results: Fourteen studies (18 papers) were included in the review. HUI3 was the most commonly used utility measures in hearing impairment. In all six studies, the HUI3 detected difference between groups defined by the severity of impairment, and four out of five studies detected statistically significant changes as a result of intervention. The only study available suggested that EQ-5D only had weak ability to discriminate difference between severity groups, and in four out of five studies, EQ-5D failed to detected changes. Only one study involved the SF-6D; thus, the information is too limited to conclude on its performance. Also evidence for the reliability of these measures was not found.
Conclusion: Overall, the validity and responsiveness of the HUI3 in hearing impairment was good. The responsiveness of EQ-5D was relatively poor and weak validity was suggested by limited evidence. The evidence on SF-6D was too limited to make any judgment. More head-to-head comparisons of these and other preference measures of health are required.Medical Research Counci
Wilson Lines and a Canonical Basis of SU(4) Heterotic Standard Models
The spontaneous breaking of SU(4) heterotic standard models by Z_3 x Z_3
Wilson lines to the MSSM with three right-handed neutrino supermultiplets and
gauge group SU(3)_C x SU(2)_L x U(1) x U(1) is explored. The two-dimensional
subspace of the Spin(10) Lie algebra that commutes with su(3)_C + su(2)_L is
analyzed. It is shown that there is a unique basis for which the initial soft
supersymmetry breaking parameters are uncorrelated and for which the U(1) x
U(1) field strengths have no kinetic mixing at any scale. If the Wilson lines
"turn on" at different scales, there is an intermediate regime with either a
left-right or a Pati-Salam type model. We compute their spectra directly from
string theory, and adjust the associated mass parameter so that all gauge
parameters exactly unify. A detailed analysis of the running gauge couplings
and soft gaugino masses is presented.Comment: 59 pages, 9 figure
LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM
We study the phenomenology of a supersymmetric left-right model, assuming
minimal supergravity boundary conditions. Both left-right and (B-L) symmetries
are broken at an energy scale close to, but significantly below the GUT scale.
Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for
superpotential and soft parameters complete at 2-loop order. At low energies
lepton flavour violation (LFV) and small, but potentially measurable mass
splittings in the charged scalar lepton sector appear, due to the RGE running.
Different from the supersymmetric 'pure seesaw' models, both, LFV and slepton
mass splittings, occur not only in the left- but also in the right slepton
sector. Especially, ratios of LFV slepton decays, such as Br()/Br() are sensitive to the
ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts
a polarization asymmetry of the outgoing positrons in the decay , A ~ [0,1], which differs from the pure seesaw 'prediction' A=1$.
Observation of any of these signals allows to distinguish this model from any
of the three standard, pure (mSugra) seesaw setups.Comment: 43 pages, 17 figure
QGP flow fluctuations and the characteristics of higher moments
The dynamical development of expanding Quark-gluon Plasma (QGP) flow is
studied in a 3+1D fluid dynamical model with a globally symmetric, initial
condition. We minimize fluctuations arising from complex dynamical processes at
finite impact parameters and from fluctuating random initial conditions to have
a conservative fluid dynamical background estimate for the statistical
distributions of the thermodynamical parameters. We also avoid a phase
transition in the equation of state, and we let the matter supercool during the
expansion.
Then central Pb+Pb collisions at TeV are studied in an
almost perfect fluid dynamical model, with azimuthally symmetric initial state
generated in a dynamical flux-tube model. The general development of
thermodynamical extensives are also shown for lower energies.
We observe considerable deviations from a thermal equilibrium source as a
consequence of the fluid dynamical expansion arising from a least fluctuating
initial state
Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity
MDM2–MDMX complexes bind the p53 tumor-suppressor protein, inhibiting p53's transcriptional activity and targeting p53 for proteasomal degradation. Inhibitors that disrupt binding between p53 and MDM2 efficiently activate a p53 response, but their use in the treatment of cancers that retain wild-type p53 may be limited by on-target toxicities due to p53 activation in normal tissue. Guided by a novel crystal structure of the MDM2–MDMX–E2(UbcH5B)–ubiquitin complex, we designed MDM2 mutants that prevent E2–ubiquitin binding without altering the RING-domain structure. These mutants lack MDM2's E3 activity but retain the ability to limit p53′s transcriptional activity and allow cell proliferation. Cells expressing these mutants respond more quickly to cellular stress than cells expressing wild-type MDM2, but basal p53 control is maintained. Targeting the MDM2 E3-ligase activity could therefore widen the therapeutic window of p53 activation in tumors
- …
