36,814 research outputs found

    Holographic Mutual Information of Two Disjoint Spheres

    Full text link
    We study quantum corrections to holographic mutual information for two disjoint spheres at a large separation by using the operator product expansion of the twist field. In the large separation limit, the holographic mutual information is vanishing at the semiclassical order, but receive quantum corrections from the fluctuations. We show that the leading contributions from the quantum fluctuations take universal forms as suggested from the boundary CFT. We find the universal behavior for the scalar, the vector, the tensor and the fermionic fields by treating these fields as free fields propagating in the fixed background and by using the 1/n prescription. In particular, for the fields with gauge symmetries, including the massless vector boson and massless graviton, we find that the gauge parts in the propagators play indispensable role in reading the leading order corrections to the bulk mutual information.Comment: 37 pages, 1 figure; significant revisions, corrected the discussions on the computations of the mutual information in CFT, conclusions unchange

    Deciphering a novel image cipher based on mixed transformed Logistic maps

    Full text link
    Since John von Neumann suggested utilizing Logistic map as a random number generator in 1947, a great number of encryption schemes based on Logistic map and/or its variants have been proposed. This paper re-evaluates the security of an image cipher based on transformed logistic maps and proves that the image cipher can be deciphered efficiently under two different conditions: 1) two pairs of known plain-images and the corresponding cipher-images with computational complexity of O(218+L)O(2^{18}+L); 2) two pairs of chosen plain-images and the corresponding cipher-images with computational complexity of O(L)O(L), where LL is the number of pixels in the plain-image. In contrast, the required condition in the previous deciphering method is eighty-seven pairs of chosen plain-images and the corresponding cipher-images with computational complexity of O(27+L)O(2^{7}+L). In addition, three other security flaws existing in most Logistic-map-based ciphers are also reported.Comment: 10 pages, 2 figure

    Apparent horizon and gravitational thermodynamics of Universe in the Eddington-Born-Infeld theory

    Full text link
    The thermodynamics of Universe in the Eddington-Born-Infeld (EBI) theory was restudied by utilizing the holographic-style gravitational equations that dominate the dynamics of the cosmical apparent horizon ΥA\Upsilon_{A} and the evolution of Universe. We started in rewriting the EBI action of the Palatini approach into the Bigravity-type action with an extra metric qμνq_{\mu\nu}. With the help of the holographic-style dynamical equations, we discussed the property of the cosmical apparent horizon ΥA\Upsilon_{A} including timelike, spacelike and null characters, which depends on the value of the parameter of state wmw_{m} in EBI Universe. The unified first law for the gravitational thermodynamics and the total energy differential for the open system enveloped by ΥA\Upsilon_{A} in EBI Universe were obtained. Finally, applying the positive-heat-out sign convention, we derived the generalized second law of gravitational thermodynamics in EBI universe.Comment: 23 pages, 0 figure

    The Nullity of Bicyclic Signed Graphs

    Full text link
    Let \Gamma be a signed graph and let A(\Gamma) be the adjacency matrix of \Gamma. The nullity of \Gamma is the multiplicity of eigenvalue zero in the spectrum of A(\Gamma). In this paper we characterize the signed graphs of order n with nullity n-2 or n-3, and introduce a graph transformation which preserves the nullity. As an application we determine the unbalanced bicyclic signed graphs of order n with nullity n-3 or n-4, and signed bicyclic signed graphs (including simple bicyclic graphs) of order n with nullity n-5

    Noise Performance Comparison of 1.5 um Correlated Photon Pair Generation in Different Fibers

    Full text link
    In this paper, the noise performances of 1.5 um correlated photon pair generations based on spontaneous four wave-mixing in three types of fibers, i.e., dispersion shifted fiber, highly nonlinear fiber, and highly nonlinear microstructure fiber are investigated experimentally. Result of the comparison shows that highly nonlinear microstructure fiber has the lowest Raman noise photon generation rate among the three types of fibers while correlated photon pair generation rate is the same. Theoretical analysis shows that the noise performance is determined by the nonlinear index and Raman response of the material in fiber core. The Raman response raises with increasing doping level, however, the nonlinear index is almost unchanged with it. As a result, highly nonlinear microstructure fiber with pure silica core has the best noise performance and has great potential in practical sources of correlated photon pairs and heralded single photons.Comment: 10 pages, 6 figure
    corecore