7,912 research outputs found
Constraining the HI-Halo Mass Relation From Galaxy Clustering
We study the dependence of galaxy clustering on atomic gas mass using a
sample of 16,000 galaxies with redshift in the range of
and HI mass of , drawn from the 70% complete sample
of the Arecibo Legacy Fast ALFA survey. We construct subsamples of galaxies
with above different thresholds, and make volume-limited
clustering measurements in terms of three statistics: the projected two-point
correlation function, the projected cross-correlation function with respect to
a reference sample selected from the Sloan Digital Sky Survey, and the
redshift-space monopole moment. In contrast to previous studies, which found
no/weak HI-mass dependence, we find both the clustering amplitude on scales
above a few Mpc and the bias factors to increase significantly with increasing
HI mass for subsamples with HI mass thresholds above . For HI
mass thresholds below , while the measurements have large
uncertainties caused by the limited survey volume and sample size, the inferred
galaxy bias factors are systematically lower than the minimum halo bias factor
from mass-selected halo samples. The simple halo model, in which galaxy content
is only determined by halo mass, has difficulties in interpreting the
clustering measurements of the HI-selected samples. We extend the simple model
by including the halo formation time as an additional parameter. A model that
puts HI-rich galaxies into halos that formed late can reproduce the clustering
measurements reasonably well. We present the implications of our best-fitting
model on the correlation of HI mass with halo mass and formation time, as well
as the halo occupation distributions and HI mass functions for central and
satellite galaxies. These results are compared with the predictions from
semi-analytic galaxy formation models and hydrodynamic galaxy formation
simulations.Comment: Accepted for publication in ApJ. The 2PCF measurements are available
at http://sdss4.shao.ac.cn/guoh
Enhanced Biocatalytic Esterification with Lipase-Immobilized Chitosan/Graphene Oxide Beads
In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the “insoluble” enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS) and 1-ethyl-(3-dimethylaminopropyl) carbodiimide (EDC), and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60°C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions
BAsE-Seq: a method for obtaining long viral haplotypes from short sequence reads.
We present a method for obtaining long haplotypes, of over 3 kb in length, using a short-read sequencer, Barcode-directed Assembly for Extra-long Sequences (BAsE-Seq). BAsE-Seq relies on transposing a template-specific barcode onto random segments of the template molecule and assembling the barcoded short reads into complete haplotypes. We applied BAsE-Seq on mixed clones of hepatitis B virus and accurately identified haplotypes occurring at frequencies greater than or equal to 0.4%, with >99.9% specificity. Applying BAsE-Seq to a clinical sample, we obtained over 9,000 viral haplotypes, which provided an unprecedented view of hepatitis B virus population structure during chronic infection. BAsE-Seq is readily applicable for monitoring quasispecies evolution in viral diseases
A Novel Severe Acute Respiratory Syndrome Coronavirus Protein, U274, is transported to the Cell Surface and undergoes Endocytosis
The severe acute respiratory syndrome coronavirus (SARS-CoV) genome contains open reading frames
(ORFs) that encode for several genes that are homologous to proteins found in all known coronaviruses. These
are the replicase gene 1a/1b and the four structural proteins, nucleocapsid (N), spike (S), membrane (M), and
envelope (E), and these proteins are expected to be essential for the replication of the virus. In addition, this
genome also contains nine other potential ORFs varying in length from 39 to 274 amino acids. The largest
among these is the first ORF of the second longest subgenomic RNA, and this protein (termed U274 in the
present study) consists of 274 amino acids and contains three putative transmembrane domains. Using
antibody specific for the C terminus of U274, we show U274 to be expressed in SARS-CoV-infected Vero E6 cells
and, in addition to the full-length protein, two other processed forms were also detected. By indirect immunofluorescence,
U274 was localized to the perinuclear region, as well as to the plasma membrane, in both
transfected and infected cells. Using an N terminus myc-tagged U274, the topology of U274 and its expression
on the cell surface were confirmed. Deletion of a cytoplasmic domain of U274, which contains Yxx and
diacidic motifs, abolished its transport to the cell surface. In addition, U274 expressed on the cell surface can
internalize antibodies from the culture medium into the cells. Coimmunoprecipitation experiments also
showed that U274 could interact specifically with the M, E, and S structural proteins, as well as with U122,
another protein that is unique to SARS-CoV.Web of Scienc
Tabernacles of the Spirit
In the classic tradition of the exploratory essay, George Gammack examines the theme of community in this paper. He details varied aspects of the creation of community among those who are retired, taking as its focus the Men’s Sheds movement. The paper explores the relationship between persons and community in later years, looking in particular at how those with a lifetime’s worth of skills and knowledge can continue to contribute to the life of a community. Along the way we are introduced to the work of authors such as Charles Taylor, Richard Niebuhr, Primo Levi, Seamus Heaney and Richard Sennett on the subject of work and what comes after it.Publisher PD
Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications
Zinc oxide nano-wires (ZnO NWs) are synthesized reproducibly with high yield via a low temperature hydrothermal technique. The influence of the growth duration time, growth temperature, zinc precursor and base concentration of Na2CO3 on the morphology of NWs is investigated. The growth products are characterised using scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). SEM analysis shows that the optimum growth temperature is 140 °C and finds that length and diameter of ZnO NWs have a relationship with growth duration time and base concentrations of Na2CO3. In addition, it is reported that a high (∼ 90%) yield of ZnO NWs can be synthesised via using any of three different precursors: zinc chloride, zinc acetate and zinc nitrate. TEM and XRD results indicate the high purity and the single crystalline nature of the ZnO NWs. XPS confirms the absence of sodium contaminants on the surface and indicates a near flat band surface condition. PL shows a large visible band in the yellow part of the spectrum, and a small exciton emission peak, indicating a large defect concentration, which is reduced after annealing in air
In-situ Noise Measurement and Analysis for the Motorcycle Muffler
Noise from the vehicles is one of the noise pollution to the environment. The noises emitted by the vehicles have to obey the requirement of regulation of maximum sound pressure level permitted for respective vehicles. In this study, the aim is to reduce the noise emitted from the motorcycle muffler. The noise emitted from the motorcycle muffler is analyzed and measured using a sound level meter. The average sound pressure level of the motorcycle muffler is determined in certain conditions. The sound pressure level is obtained from original motorcycle muffler, when it is under constant speed (10 km/hr, 20 km/hr, 30 km/hr) and under acceleration (in the scope of 0 km/hr to 30 km/hr). The study is continued by using a modified motorcycle muffler which contains sound absorptive materials. The absorptive materials chosen are glass wool, cotton and Styrofoam and they are taking turn to be placed into the motorcycle muffler to reduce the sound pressure level. Then the experiment is repeated. It is found that Styrofoam does not perform significantly in absorbing sound or noise in this study. Glass wool demonstrates relatively better sound energy absorption compared with cotton. In general, soft and porous materials are considered good performance in sound absorption. Denser materials are better at soundproofing or sound blocking. Therefore, glass wool with relatively higher density among the investigated absorptive materials in this study has the greatest sound absorption performance
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
Numerical Modelling Of Synthetic-Jet-Assisted Mixing
The aim of the present study is to develop a Computational Fluid Dynamics (CFD) model of synthetic-jet-assisted fluid mixer. A geometric model which consists of a mixing channel with a pair of synthetic jet actuators was created. The diaphragm motion of the synthetic jet actuators was realized by a moving mesh method. Dye solution and water were introduced into the fluid mixer from two different inlets. Mixing degree was numerically predicted as the result of the CFD model. Verifications were performed to examine the sensitivity of the model to temporal and spatial resolutions.
The results were validated against experimental data and a good agreement was achieved. The overall results indicated that the time-step size affected the mixing degree significantly. The mesh resolution only has slight influence on the mixing degree
- …
