30,364 research outputs found
Replacement Paths via Row Minima of Concise Matrices
Matrix is {\em -concise} if the finite entries of each column of
consist of or less intervals of identical numbers. We give an -time
algorithm to compute the row minima of any -concise matrix.
Our algorithm yields the first -time reductions from the
replacement-paths problem on an -node -edge undirected graph
(respectively, directed acyclic graph) to the single-source shortest-paths
problem on an -node -edge undirected graph (respectively, directed
acyclic graph). That is, we prove that the replacement-paths problem is no
harder than the single-source shortest-paths problem on undirected graphs and
directed acyclic graphs. Moreover, our linear-time reductions lead to the first
-time algorithms for the replacement-paths problem on the following
classes of -node -edge graphs (1) undirected graphs in the word-RAM model
of computation, (2) undirected planar graphs, (3) undirected minor-closed
graphs, and (4) directed acyclic graphs.Comment: 23 pages, 1 table, 9 figures, accepted to SIAM Journal on Discrete
Mathematic
Quasiclassical Green function in an external field and small-angle scattering
The quasiclassical Green functions of the Dirac and Klein-Gordon equations in
the external electric field are obtained with the first correction taken into
account. The relevant potential is assumed to be localized, while its spherical
symmetry is not required. Using these Green functions, the corresponding wave
functions are found in the approximation similar to the Furry-Sommerfeld-Maue
approximation. It is shown that the quasiclassical Green function does not
coincide with the Green function obtained in the eikonal approximation and has
a wider region of applicability. It is illustrated by the calculation of the
small-angle scattering amplitude for a charged particle and the forward photon
scattering amplitude. For charged particles, the first correction to the
scattering amplitude in the non-spherically symmetric potential is found. This
correction is proportional to the scattering angle. The real part of the
amplitude of forward photon scattering in a screened Coulomb potential is
obtained.Comment: 20 pages, latex, 1 figur
Modulation Doping near Mott-Insulator Heterojunctions
We argue that interesting strongly correlated two-dimensional electron
systems can be created by modulation doping near a heterojunction between Mott
insulators. Because the dopant atoms are remote from the carrier system, the
electronic system will be weakly disordered. We argue that the competition
between different ordered states can be engineered by choosing appropriate
values for the dopant density and the setback distance of the doping layer. In
particular larger setback distances favor two-dimensional antiferromagnetism
over ferromagnetism. We estimate some key properties of modulation-doped Mott
insulator heterojunctions by combining insights from Hartree-Fock-Theory and
Dynamical-Mean-Field-Theory descriptions and discuss potentially attractive
material combinations.Comment: 9 pages, 9 figures, submitte
Effect of Al addition on microstructure of AZ91D
Casting is a net shape or near net shape forming process so work-hardening will not be applicable for improving properties of magnesium cast alloys. Grain refinement, solid-solution strengthening, precipitation hardening and specially designed heat treatment are the techniques used to enhance the properties of these alloys. This research focusses on grain refinement of magnesium alloy AZ91D, which is a widely used commercial cast alloy. Recently, Al-B based master alloys have shown potential in grain refining AZ91D. A comparative study of the grain refinement of AZ91D by addition of 0.02wt%B, 0.04wt%B, 0.1wt%B, 0.5wt%B and 1.0wt%B of A1-5B master alloy and equivalent amount of solute element aluminium is described in this paper. Hardness profile of AZ91D alloyed with boron and aluminium is compared
Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay
A high-storage efficiency and long-lived quantum memory for photons is an
essential component in long-distance quantum communication and optical quantum
computation. Here, we report a 78% storage efficiency of light pulses in a cold
atomic medium based on the effect of electromagnetically induced transparency
(EIT). At 50% storage efficiency, we obtain a fractional delay of 74, which is
the best up-to-date record. The classical fidelity of the recalled pulse is
better than 90% and nearly independent of the storage time, as confirmed by the
direct measurement of phase evolution of the output light pulse with a
beat-note interferometer. Such excellent phase coherence between the stored and
recalled light pulses suggests that the current result can be readily applied
to single photon wave packets. Our work significantly advances the technology
of EIT-based optical memory and may find practical applications in
long-distance quantum communication and optical quantum computation.Comment: 5 pages, 4 figure
Models of Little Higgs and Electroweak Precision Tests
The little Higgs idea is an alternative to supersymmetry as a solution to the
gauge hierarchy problem. In this note, I review various little Higgs models and
their phenomenology with emphases on the precision electroweak constraints in
these models.Comment: 16 pages; 4 figures; review submitted to Modern Physics Letter
Observation of interlayer phonon modes in van der Waals heterostructures
We have investigated the vibrational properties of van der Waals
heterostructures of monolayer transition metal dichalcogenides (TMDs),
specifically MoS2/WSe2 and MoSe2/MoS2 heterobilayers as well as twisted MoS2
bilayers, by means of ultralow-frequency Raman spectroscopy. We discovered
Raman features (at 30 ~ 40 cm-1) that arise from the layer-breathing mode (LBM)
vibrations between the two incommensurate TMD monolayers in these structures.
The LBM Raman intensity correlates strongly with the suppression of
photoluminescence that arises from interlayer charge transfer. The LBM is
generated only in bilayer areas with direct layer-layer contact and atomically
clean interface. Its frequency also evolves systematically with the relative
orientation between of the two layers. Our research demonstrates that LBM can
serve as a sensitive probe to the interface environment and interlayer
interactions in van der Waals materials
VI-Band Follow-Up Observations of Ultra-Long-Period Cepheid Candidates in M31
The ultra-long period Cepheids (ULPCs) are classical Cepheids with pulsation
periods exceeding days. The intrinsic brightness of ULPCs are ~1
to ~3 mag brighter than their shorter period counterparts. This makes them
attractive in future distance scale work to derive distances beyond the limit
set by the shorter period Cepheids. We have initiated a program to search for
ULPCs in M31, using the single-band data taken from the Palomar Transient
Factory, and identified eight possible candidates. In this work, we presented
the VI-band follow-up observations of these eight candidates. Based on our
VI-band light curves of these candidates and their locations in the
color-magnitude diagram and the Period-Wesenheit diagram, we verify two
candidates as being truly ULPCs. The six other candidates are most likely other
kinds of long-period variables. With the two confirmed M31 ULPCs, we tested the
applicability of ULPCs in distance scale work by deriving the distance modulus
of M31. It was found to be mag. The large error
in the derived distance modulus, together with the large intrinsic dispersion
of the Period-Wesenheit (PW) relation and the small number of ULPCs in a given
host galaxy, means that the question of the suitability of ULPCs as standard
candles is still open. Further work is needed to enlarge the sample of
calibrating ULPCs and reduce the intrinsic dispersion of the PW relation before
re-considering ULPCs as suitable distance indicators.Comment: 13 pages, with 14 Figures and 4 Tables (one online table). AJ
accepte
Gauge Invariant Effective Lagrangian for Kaluza-Klein Modes
We construct a manifestly gauge invariant Lagrangian in 3+1 dimensions for N
Kaluza-Klein modes of an SU(m) gauge theory in the bulk. For example, if the
bulk is 4+1, the effective theory is \Pi_{i=1}^{N+1} SU(m)_i with N chiral
(\bar{m},m) fields connecting the groups sequentially. This can be viewed as a
Wilson action for a transverse lattice in x^5, and is shown explicitly to match
the continuum 4+1 compactifed Lagrangian truncated in momentum space. Scale
dependence of the gauge couplings is described by the standard renormalization
group technique with threshold matching, leading to effective power law
running. We also discuss the unitarity constraints, and chiral fermions.Comment: 21 pages, 4 figure
Universality properties of the stationary states in the one-dimensional coagulation-diffusion model with external particle input
We investigate with the help of analytical and numerical methods the reaction
A+A->A on a one-dimensional lattice opened at one end and with an input of
particles at the other end. We show that if the diffusion rates to the left and
to the right are equal, for large x, the particle concentration c(x) behaves
like As/x (x measures the distance to the input end). If the diffusion rate in
the direction pointing away from the source is larger than the one
corresponding to the opposite direction the particle concentration behaves like
Aa/sqrt(x). The constants As and Aa are independent of the input and the two
coagulation rates. The universality of Aa comes as a surprise since in the
asymmetric case the system has a massive spectrum.Comment: 27 pages, LaTeX, including three postscript figures, to appear in J.
Stat. Phy
- …
