20,555 research outputs found

    Learning boosted asymmetric classifiers for object detection

    Get PDF
    http://ieeexplore.ieee.orgObject detection can be posted as those classification tasks where the rare positive patterns are to be distinguished from the enormous negative patterns. To avoid the danger of missing positive patterns, more attention should be payed on them. Therefore there should be different requirements for False Reject Rate (FRR) and False Accept Rate (FAR) , and learning a classifier should use an asymmetric factor to balance between FRR and FAR. In this paper, a normalized asymmetric classification error is proposed for the task of rejecting negative patterns. Minimizing it not only controls the ratio of FRR and FAR, but more importantly limits the upper-bound of FRR. The latter characteristic is advantageous for those tasks where there is a requirement for low FRR. Based on this normalized asymmetric classification error, we develop an asymmetric AdaBoost algorithm with variable asymmetric factor and apply it to the learning of cascade classifiers for face detection. Experiments demonstrate that the proposed method achieves less complex classifiers and better performance than some previous AdaBoost methods

    Causal Evidence for the Role of Specific GABAergic Interneuron Types in Entorhinal Recruitment of Dentate Granule Cells

    Get PDF
    The dentate gyrus (DG) is the primary gate of the hippocampus and controls information flow from the cortex to the hippocampus proper. To maintain normal function, granule cells (GCs), the principal neurons in the DG, receive fine- tuned inhibition from local-circuit GABAergic inhibitory interneurons (INs). Abnormalities of GABAergic circuits in the DG are associated with several brain disorders, including epilepsy, autism, schizophrenia, and Alzheimer disease. Therefore, understanding the network mechanisms of inhibitory control of GCs is of functional and pathophysiological importance. GABAergic inhibitory INs are heterogeneous, but it is unclear how individual subtypes contribute to GC activity. Using cell-type-specific optogenetic perturbation, we investigated whether and how two major IN populations defined by parvalbumin (PV) and somatostatin (SST) expression, regulate GC input transformations. We showed that PV-expressing (PV+) INs, and not SST- expressing (SST+) INs, primarily suppress GC responses to single cortical stimulation. In addition, these two IN classes differentially regulate GC responses to θ and γ frequency inputs from the cortex. Notably, PV+ INs specifically control the onset of the spike series, whereas SST+ INs preferentially regulate the later spikes in the series. Together, PV+ and SST+ GABAergic INs engage differentially in GC input-output transformations in response to various activity patterns

    An Integrated Simulation Design With Three-Dimensional Motions and a Hydraulic Stewart Simulator

    Get PDF
    This paper presents an integrated design process and tests of a Stewart simulator with a virtual visualization tool, which uses Virtools to create and generate three-dimensional motions. An inverse kinematic algorithm is written to convert each visualized motion to the displacements of six cylinders in a Stewart motion simulator. Information of the displacements is then transferred through the User Datagram Protocol (UDP) to a personal computer which has the LabVIEW software. An NI USB-6251 data acquisition device is applied to interact with the LabVIEW program and the Stewart hydraulic simulator. The approach presented in this paper to function an old Stewart hydraulic simulator can also be applied to other simulators

    The Magnitude of Switching Costs for Corporate Antivirus Software Switching Decision

    Get PDF
    Today’s businesses environment is forcing companies to become increasingly more efficient in applying Internet technology to conduct transactions. AS the possibility of infection by computer virus is much greater now than ever before, businesses search for appropriate corporate antivirus software to safeguard their computer systems. This paper considers corporate antivirus software switching as one of the major security selection problem and proposes possible avenues for software switching decision and management. In conceptual model, we draw upon switching costs where transaction costs, learning costs, and artificial costs were examined as main costs for software switching decision. Our findings shown only two out of three types of switching costs have influence over corporate antivirus software switching decisions. Despite the existence of switching costs, businesses continue to repeat software switching because the perceived risks of security threats are much greater than the switching cost itself. Furthermore, we examine various approaches to the cost of switching and then propose an index map to evaluate switching decision. Five sets of propositions are advanced to help guide this research

    Single Top Quark Production via FCNC Couplings at Hadron Colliders

    Get PDF
    We calculate single top-quark production at hadron colliders via the chromo-magnetic flavor-changing neutral current couplings tˉcg\bar tcg and tˉug\bar tug. We find that the strength for the anomalous tˉcg\bar tcg (tˉug\bar tug) coupling may be probed to κc/Λ=0.092TeV1\kappa_c / \Lambda = 0.092 {TeV}^{-1} (κu/Λ=0.026TeV1\kappa_u / \Lambda = 0.026 {TeV}^{-1}) at the Tevatron with 2fb12 {fb}^{-1} of data and κc/Λ=0.013TeV1\kappa_c / \Lambda = 0.013 {TeV}^{-1} (κu/Λ=0.0061TeV1\kappa_u / \Lambda = 0.0061 {TeV}^{-1}) at the LHC with 10fb110 {fb}^{-1} of data. The two couplings may be distinguished by a comparision of the single top signal with the direct top and top decay signals for these couplings.Comment: 18 pages, 6 figures, 3 table
    corecore