8,536 research outputs found

    Problems of QCD factorization in exclusive decays of B meson to charmonium

    Full text link
    We study the exclusive decays of BB meson into P-wave charmonium states χcJ(J=0,1)\chi_{cJ}(J=0,1) in the QCD factorization approach with light-cone distribution functions describing the mesons in the processes. For Bχc1KB \to \chi_{c1} K decay, we find that there are logarithmic divergences arising from nonfactorizable spectator interactions even at twist-2 order and the decay rate is too small to accommodate the experimental data. For Bχc0KB\to \chi_{c0} K decay, we find that aside from the logarithmic divergences arising from spectator interactions at leading-twist order, more importantly, the factorization will break down due to the infrared divergence arising from nonfactorizable vertex corrections, which is independent of the specific form of the light-cone distribution functions. Our results may indicate that QCD factorization in the present form may not be safely applied to BB-meson exclusive decays to charmonium states.Comment: Latex, 7 pages, 1 eps figure, final version to appear in Phys.Lett.B; a few references are added, the expression of chi_c1 decay constant is give

    Inhibition of yes-associated protein suppresses brain metastasis of human lung adenocarcinoma in a murine model.

    Get PDF
    Yes-associated protein (YAP) is a main mediator of the Hippo pathway and promotes cancer development and progression in human lung cancer. We sought to determine whether inhibition of YAP suppresses metastasis of human lung adenocarcinoma in a murine model. We found that metastatic NSCLC cell lines H2030-BrM3(K-rasG12C mutation) and PC9-BrM3 (EGFRΔexon19 mutation) had a significantly decreased p-YAP(S127)/YAP ratio compared to parental H2030 (K-rasG12C mutation) and PC9 (EGFRΔexon19 mutation) cells (P < .05). H2030-BrM3 cells had significantly increased YAP mRNA and expression of Hippo downstream genes CTGF and CYR61 compared to parental H2030 cells (P < .05). Inhibition of YAP by short hairpin RNA (shRNA) and small interfering RNA (siRNA) significantly decreased mRNA expression in downstream genes CTGF and CYR61 in H2030-BrM3 cells (P < .05). In addition, inhibiting YAP by YAP shRNA significantly decreased migration and invasion abilities of H2030-BrM3 cells (P < .05). We are first to show that mice inoculated with YAP shRNA-transfected H2030-BrM3 cells had significantly decreased metastatic tumour burden and survived longer than control mice (P < .05). Collectively, our results suggest that YAP plays an important role in promoting lung adenocarcinoma brain metastasis and that direct inhibition of YAP by shRNA suppresses H2030-BrM3 cell brain metastasis in a murine model

    Charmless hadronic decays BPP,PV,VVB \to PP, PV, VV and new physics effects in the general two-Higgs doublet models

    Get PDF
    Based on the low-energy effective Hamiltonian with the generalized factorization, we calculate the new physics contributions to the branching ratios of the two-body charmless hadronic decays of BuB_u and BdB_d mesons induced by the new gluonic and electroweak charged-Higgs penguin diagrams in the general two-Higgs doublet models (models I, II and III). Within the considered parameter space, we find that: (a) the new physics effects from new gluonic penguin diagrams strongly dominate over those from the new γ\gamma- and Z0Z^0- penguin diagrams; (b) in models I and II, new physics contributions to most studied B meson decay channels are rather small in size: from -15% to 20%; (c) in model III, however, the new physics enhancements to the penguin-dominated decay modes can be significant, (30200)\sim (30 -200)%, and therefore are measurable in forthcoming high precision B experiments; (d) the new physics enhancements to ratios {\cal B}(B \to K \etap) are significant in model III, (3570)\sim (35 -70)%, and hence provide a simple and plausible new physics interpretation for the observed unexpectedly large B \to K \etap decay rates; (e) the theoretical predictions for B(BK+π){\cal B}(B \to K^+ \pi) and B(BK0π+){\cal B}(B \to K^0 \pi^+) in model III are still consistent with the data within 2σ2\sigma errors; (f) the significant new physics enhancements to the branching ratios of BK0π0,Kη,K+π,K+ϕ,K0ω,K+ϕB \to K^0 \pi^0, K^* \eta, K^{*+} \pi^-, K^+ \phi, K^{*0} \omega, K^{*+} \phi and K0ϕK^{*0} \phi decays are helpful to improve the agreement between the data and the theoretical predictions; (g) the theoretical predictions of B(BPP,PV,VV){\cal B}(B \to PP, PV, VV) in the 2HDM's are generally consistent with experimental measurements and upper limits (9090% C.L.)Comment: 55 pages, Latex file, 17 PS and EPS figures. With minor corrections, final version to be published in Phys.Rev. D. Repot-no: PKU-TH-2000-4

    Surface faceting and reconstruction of ceria nanoparticles

    Get PDF
    The surface atomic arrangement of metal oxides determines their physical and chemical properties, and the ability to control and optimize structural parameters is of crucial importance for many applications, in particular in heterogeneous catalysis and photocatalysis. Whereas the structures of macroscopic single crystals can be determined with established methods, for nanoparticles (NPs), this is a challenging task. Herein, we describe the use of CO as a probe molecule to determine the structure of the surfaces exposed by rod-shaped ceria NPs. After calibrating the CO stretching frequencies using results obtained for different ceria single-crystal surfaces, we found that the rod-shaped NPs actually restructure and expose {111} nanofacets. This finding has important consequences for understanding the controversial surface chemistry of these catalytically highly active ceria NPs and paves the way for the predictive, rational design of catalytic materials at the nanoscale.Postprint (author's final draft

    Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase

    Get PDF
    The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair

    Glutamatergic Dysfunction and Glutamatergic Compounds for Major Psychiatric Disorders: Evidence From Clinical Neuroimaging Studies

    Get PDF
    Excessive glutamate release has been linked to stress and many neurodegenerative diseases. Evidence indicates abnormalities of glutamatergic neurotransmission or glutamatergic dysfunction as playing an important role in the development of many major psychiatric disorders (e.g., schizophrenia, bipolar disorder, and major depressive disorder). Recently, ketamine, an N-methyl-d-aspartate antagonist, has been demonstrated to have promisingly rapid antidepressant efficacy for treatment-resistant depression. Many compounds that target the glutamate system have also become available that possess potential in the treatment of major psychiatric disorders. In this review, we update evidence from recent human studies that directly or indirectly measured glutamatergic neurotransmission and function in major psychiatric disorders using modalities such as magnetic resonance spectroscopy, positron emission tomography/single-photon emission computed tomography, and paired-pulse transcranial magnetic stimulation. The newer generation of antidepressants that target the glutamatergic system developed in human clinical studies is also reviewed

    Reciprocal regulation of MicroRNA-99a and insulin-like growth factor I receptor signaling in oral squamous cell carcinoma cells

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs), small noncoding RNA molecules can function as oncogenes or tumor suppressors in tumorigenesis. Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide with a 5-year survival rate of approximately 50%. METHODS: The expression of microRNA-99a (miR-99a) in OSCC tissues and cell lines was investigated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. The functions of miR-99a in migration/invasion and lung colonization were determined by transwell and tail vein injection assays, respectively. Specific targets of miR-99a were determined by software prediction, correlation with target protein expression, and luciferase reporter assay. The signaling pathways involved in regulation of miR-99a were investigated using the kinase inhibitors. RESULTS: We observed reduced levels of miR-99a, identified as one of the most downregulated miRNA in OSCC and all tested OSCC cell lines compared to normal oral keratinocytes. Ectopic miR-99a expression in OSCC cells markedly reduced migration and invasion in vitro as well as lung colonization in vivo. When evaluating the specific targets of miR-99a, we found that ectopic miR-99a expression downregulates insulin-like growth factor 1 receptor (IGF1R) protein and that the expression of miR-99a correlates negatively with IGF1R protein in OSCC cells. Insertion of the 3′UTR of IGF1R mRNA into the 3′UTR of a reporter gene markedly reduced luciferase activity in OSCC cells expressing miR-99a, suggesting that miR-99a reduces luciferase activity by targeting the 3′UTR of IGF1R mRNA. When evaluating the mechanisms of miR-99a downregulation, we observed the upregulation of miR-99a expression in serum-starved conditions and its suppression in response to insulin-like growth factor (IGF1) stimulation. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) kinase inhibited IGF1-induced suppression of miR-99a, suggesting the negative regulation of miR-99a expression by IGF1R signaling. CONCLUSION: Overall, results indicate that miR-99a functions as a tumor metastasis suppressor in OSCC cells and mutually regulates IGF1R expression in a reciprocal regulation
    corecore