6,060 research outputs found
No More Discrimination: Cross City Adaptation of Road Scene Segmenters
Despite the recent success of deep-learning based semantic segmentation,
deploying a pre-trained road scene segmenter to a city whose images are not
presented in the training set would not achieve satisfactory performance due to
dataset biases. Instead of collecting a large number of annotated images of
each city of interest to train or refine the segmenter, we propose an
unsupervised learning approach to adapt road scene segmenters across different
cities. By utilizing Google Street View and its time-machine feature, we can
collect unannotated images for each road scene at different times, so that the
associated static-object priors can be extracted accordingly. By advancing a
joint global and class-specific domain adversarial learning framework,
adaptation of pre-trained segmenters to that city can be achieved without the
need of any user annotation or interaction. We show that our method improves
the performance of semantic segmentation in multiple cities across continents,
while it performs favorably against state-of-the-art approaches requiring
annotated training data.Comment: 13 pages, 10 figure
A testability metric for path delay faults and its application
Abstract — In this paper, we propose a new testability metric for path delay faults. The metric is computed efficiently using a non-enumerative algorithm. It has been validated through extensive experiments and the results indicate a strong correlation between the proposed metric and the path delay fault testability of the circuit. We further apply this metric to derive a path delay fault test application scheme for scan-based BIST. The selection of the test scheme is guided by the proposed metric. The experimental results illustrate that the derived test application scheme can achieve a higher path delay fault coverage in scan-based BIST. Because of the effectiveness and efficient computation of this metric, it can be used to derive other design-for-testability techniques for path delay faults. I
Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles
A colorimetric sensing strategy employing gold nanoparticles and a paper assay platform has been developed for tuberculosis diagnosis. Unmodified gold nanoparticles and single-stranded detection oligonucleotides are used to achieve rapid diagnosis without complicated and time-consuming thiolated or other surface-modified probe preparation processes. To eliminate the use of sophisticated equipment for data analysis, the color variance for multiple detection results was simultaneously collected and concentrated on cellulose paper with the data readout transmitted for cloud computing via a smartphone. The results show that the 2.6 nM tuberculosis mycobacterium target sequences extracted from patients can easily be detected, and the turnaround time after the human DNA is extracted from clinical samples was approximately 1 h
Phenotype-based and Self-learning Inter-individual Sleep Apnea Screening with a Level IV Monitoring System
Purpose: We propose a phenotype-based artificial intelligence system that can
self-learn and is accurate for screening purposes, and test it on a Level IV
monitoring system. Methods: Based on the physiological knowledge, we
hypothesize that the phenotype information will allow us to find subjects from
a well-annotated database that share similar sleep apnea patterns. Therefore,
for a new-arriving subject, we can establish a prediction model from the
existing database that is adaptive to the subject. We test the proposed
algorithm on a database consisting of 62 subjects with the signals recorded
from a Level IV wearable device measuring the thoracic and abdominal movements
and the SpO2. Results: With the leave-one cross validation, the accuracy of the
proposed algorithm to screen subjects with an apnea-hypopnea index greater or
equal to 15 is 93.6%, the positive likelihood ratio is 6.8, and the negative
likelihood ratio is 0.03. Conclusion: The results confirm the hypothesis and
show that the proposed algorithm has great potential to screen patients with
SAS
Recommended from our members
Profiling antibody immune markers using nucleic acid systems
Technology to profile nucleic acid materials has been greatly advanced over the past decade. Nowadays, tools such as real-time quantitative PCR (qPCR) and next generation sequencing (NGS) are standard workhorses for biomedical laboratory. However, in contrast to great advance in nucleic acid science, assays used to quantify proteins and antibodies immune markers remain much stagnant. Traditional assays immunoassays such as enzyme linked immunosorbent assays (ELISA) and western blots, invented almost half a century ago, are still widely used. These assays face limitations including low sensitivity, low specificity, limited multiplex power and requirement of large sample volume. To this end, I have thought to create a methodology that allows researchers to leverage advanced nucleic acid tools to profile protein and antibody immune markers. In this thesis, I will provide an overview on current landscapes of nucleic acid-based assays for protein and antibody immune markers, and discuss how the new nucleic acid-based assay that I developed differentiates and complements other nucleic acid tools. Then, I will describe in details about our new nucleic acid assays including the creation of protein-DNA conjugates and use of these reagents to transform protein/antibody identities into quantifiable nucleic acid signals. Furthermore, I will describe potential impact of such methods in research and clinical settings. Finally, I will discuss potential development that is required to make this assays widely deployable in research and clinical communities
Recommended from our members
Fak56 functions downstream of integrin alphaPS3betanu and suppresses MAPK activation in neuromuscular junction growth
Background: Focal adhesion kinase (FAK) functions in cell migration and signaling through activation of the mitogen-activated protein kinase (MAPK) signaling cascade. Neuronal function of FAK has been suggested to control axonal branching; however, the underlying mechanism in this process is not clear. Results: We have generated mutants for the Drosophila FAK gene, Fak56. Null Fak56 mutants display overgrowth of larval neuromuscular junctions (NMJs). Localization of phospho-FAK and rescue experiments suggest that Fak56 is required in presynapses to restrict NMJ growth. Genetic analyses imply that FAK mediates the signaling pathway of the integrin αPS3βν heterodimer and functions redundantly with Src. At NMJs, Fak56 downregulates ERK activity, as shown by diphospho-ERK accumulation in Fak56 mutants, and suppression of Fak56 mutant NMJ phenotypes by reducing ERK activity. Conclusion: We conclude that Fak56 is required to restrict NMJ growth during NMJ development. Fak56 mediates an extracellular signal through the integrin receptor. Unlike its conventional role in activating MAPK/ERK, Fak56 suppresses ERK activation in this process. These results suggest that Fak56 mediates a specific neuronal signaling pathway distinct from that in other cellular processes
Impacts of Light Rail Transit Tram on the Voltage and Unbalance of the Distribution System
This paper presents the three-phase voltage and unbalance analysis for the distribution system with the loading of a light rail transit (LRT) tram. To investigate the dynamic responses of the system voltage and current, this paper adopts the Alternative Transients Program (ATP) software to model and simulate a multigrounded four-wire distribution system with an LRT loading. Two different definitions about unbalance are used to evaluate the problem. In this paper, the traction supply substation (TSS) with a single-phase transformer configuration is designed first for providing the electric power to the trams of LRT. However, it may result in the significant neutral line current and unbalance phenomenon to deteriorate the power quality of the distribution system. A Le-Blanc connection transformer in the TSS is therefore proposed to solve the problems
Surface scattering mechanisms of tantalum nitride thin film resistor
In this letter, we utilize an electrical analysis method to develop a TaN thin film resistor with a stricter spec and near-zero temperature coefficient of resistance (TCR) for car-used electronic applications. Simultaneously, we also propose a physical mechanism mode to explain the origin of near-zero TCR for the TaN thin film resistor (TFR). Through current fitting, the carrier conduction mechanism of the TaN TFR changes from hopping to surface scattering and finally to ohmic conduction for different TaN TFRs with different TaN microstructures. Experimental data of current–voltage measurement under successive increasing temperature confirm the conduction mechanism transition. A model of TaN grain boundary isolation ability is eventually proposed to influence the carrier transport in the TaN thin film resistor, which causes different current conduction mechanisms
Spontaneous Arrangement of Two-way Flow in Water Bridge
By revisiting the century-old problem of water bridge, we demonstrate that it
is in fact dynamic and comprises of two coaxial currents that carry different
charges and flow in opposite directions. Initially, the inner flow is
facilitated by the cone jet that is powered by H+ and flows out of the anode
beaker. The negative cone jet from cathode is established later and forced to
take the outer route. This spontaneous arrangement of two-way flow is revealed
by the use of chemical dyes, e.g., fluorescein and FeCl3, carbon powder, and
the Particle Image Velocimetry. These two opposing flows are found to carry
non-equal flux that results in a net transport of water to the cathode beaker.
By combining the above information and taking into account the counter flow to
equate the water level from the connecting pipe, we can estimate the cross
section and flow speed of these co-axial flows as a function of time and
applied voltage.Comment: 5 pages, 5 figure
Diagnostic performance of 3T stress magnetic resonance myocardial perfusion imaging (MRMPI) using 32-channel cardiac coil in patients with coronary artery disease
- …
