357 research outputs found

    Gene Deletion in Barley Mediated by LTR-retrotransposon BARE

    Get PDF
    A poly-row branched spike (prbs) barley mutant was obtained from soaking a two-rowed barley inflorescence in a solution of maize genomic DNA. Positional cloning and sequencing demonstrated that the prbs mutant resulted from a 28 kb deletion including the inflorescence architecture gene HvRA2. Sequence annotation revealed that the HvRA2 gene is flanked by two LTR (long terminal repeat) retrotransposons (BARE) sharing 89% sequence identity. A recombination between the integrase (IN) gene regions of the two BARE copies resulted in the formation of an intact BARE and loss of HvRA2. No maize DNA was detected in the recombination region although the flanking sequences of HvRA2 gene showed over 73% of sequence identity with repetitive sequences on 10 maize chromosomes. It is still unknown whether the interaction of retrotransposons between barley and maize has resulted in the recombination observed in the present study.Peer reviewe

    Starch Properties and Structure of A Wheat Mutant High in Resistant Starch

    Get PDF

    Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley

    Get PDF
    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley

    Inheritance and identification of molecular markers associated with a novel dwarfing gene in barley

    Get PDF
    Background Dwarfing genes have widely been used in barley breeding program. More than 30 types of dwarfs or semidwarfs have been reported, but a few has been exploited in barley breeding because pleiotropic effects of dwarfing genes cause some undesired traits. The plant architecture of newly discovered dwarfing germplasm "Huaai 11" consisted of desirable agronomic traits such as shortened stature and early maturity. Genetic factor controlling the plant height in dwarf line Huaai 11 was investigated. Results The Huaai 11 was crossed with tall varieties Monker, Mpyt, Zhenongda 3, Zaoshu 3, Advance, Huadamai 1, Huadamai 6, Hyproly and Ris01508. All the F1 plants displayed tall trait. Both tall and dwarf plants appeared in all the F2 populations with a 3:1 segregation ratio, suggesting that dwarfism of Huaai 11 is controlled by a single recessive gene, btwd1. Allelism test indicated that this dwarfing gene in the Huaai 11 is nonallelic with the gene br, uzu, sdw1 and denso. Using a double haploid population derived from a cross of Huadamai 6 and Huaai 11 and SSR markers the novel dwarfing gene was mapped onto the long arm of chromosome 7H, and closely linked to Bmac031 and Bmac167 with genetic distance of 2.2 cM. Conclusion Huaai 11 is a new source of dwarf for broadening the genetic base of dwarfism. This dwarf source was controlled by a recessive dwarfing gene btwd1, was mapped onto the long arm of chromosome 7H

    Multi-Locus Genome-Wide Association Studies for 14 Main Agronomic Traits in Barley

    Get PDF
    The agronomic traits, including morphological and yield component traits, are important in barley breeding programs. In order to reveal the genetic foundation of agronomic traits of interest, in this study 122 doubled haploid lines from a cross between cultivars “Huaai 11” (six-rowed and dwarf) and “Huadamai 6” (two-rowed) were genotyped by 9680 SNPs and phenotyped 14 agronomic traits in 3 years, and the two datasets were used to conduct multi-locus genome-wide association studies. As a result, 913 quantitative trait nucleotides (QTNs) were identified by five multi-locus GWAS methods to be associated with the above 14 traits and their best linear unbiased predictions. Among these QTNs and their adjacent genes, 39 QTNs (or QTN clusters) were repeatedly detected in various environments and methods, and 10 candidate genes were identified from gene annotation. Nineteen QTNs and two genes (sdw1/denso and Vrs1) were previously reported, and eight candidate genes need to be further validated. The Vrs1 gene, controlling the number of rows in the spike, was found to be associated with spikelet number of main spike, spikelet number per plant, grain number per plant, grain number per spike, and 1,000 grain weight in multiple environments and by multi-locus GWAS methods. Therefore, the above results evidenced the feasibility and reliability of genome-wide association studies in doubled haploid population, and the QTNs and their candidate genes detected in this study are useful for marker-assisted selection breeding, gene cloning, and functional identification in barley

    Construction of a map-based reference genome sequence for barley, Hordeum vulgare L.

    Get PDF
    Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. `Morex' was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).Peer reviewe

    Identification of QTL underlying physiological and morphological traits of flag leaf in barley

    Get PDF
    Publisher's Version/PDFBackground: Physiological and morphological traits of flag leaf play important roles in determining crop grain yield and biomass. In order to understand genetic basis controlling physiological and morphological traits of flag leaf, a double haploid (DH) population derived from the cross of Huaai 11 × Huadamai 6 was used to detect quantitative trait locus (QTL) underlying 7 physiological and 3 morphological traits at the pre-filling stage in year 2012 and 2013. Results: Total of 38 QTLs distributed on chromosome 1H, 2H, 3H, 4H, 6H and 7H were detected, and explained 6.53% - 31.29% phenotypic variation. The QTLs flanked by marker Bmag829 and GBM1218 on chromosome 2H were associated with net photosynthetic rate (Pn), stomatal conductance (Gs), flag leaf area (LA), flag leaf length (FLL), flag leaf width (FLW), relative chlorophyll content (SPD) and leaf nitrogen concentration (LNC). Conclusion: Two QTL cluster regions associated with physiological and morphological traits, one each on the chromosome 2H and 7H, were observed. The two markers (Bmag829 and GBM1218) may be useful for marker assisted selection (MAS) in barley breeding.This project was supported in part by the National Natural Science Foundation of China (31301310 and 31228017) and the earmarked fund for China Agriculture Research System (CARS-5)

    A global barley panel revealing genomic signatures of breeding in modern Australian cultivars.

    Get PDF
    The future of plant cultivar improvement lies in the evaluation of genetic resources from currently available germplasm. Today's gene pool of crop genetic diversity has been shaped during domestication and more recently by breeding. Recent efforts in plant breeding have been aimed at developing new and improved varieties from poorly adapted crops to suit local environments. However, the impact of these breeding efforts is poorly understood. Here, we assess the contributions of both historical and recent breeding efforts to local adaptation and crop improvement in a global barley panel by analysing the distribution of genetic variants with respect to geographic region or historical breeding category. By tracing the impact breeding had on the genetic diversity of barley released in Australia, where the history of barley production is relatively young, we identify 69 candidate regions within 922 genes that were under selection pressure. We also show that modern Australian barley varieties exhibit 12% higher genetic diversity than historical cultivars. Finally, field-trialling and phenotyping for agriculturally relevant traits across a diverse range of Australian environments suggests that genomic regions under strong breeding selection and their candidate genes are closely associated with key agronomic traits. In conclusion, our combined dataset and germplasm collection provide a rich source of genetic diversity that can be applied to understanding and improving environmental adaptation and enhanced yields

    Automatic and fast classification of barley grains from images: A deep learning approach

    Get PDF
    Australia has a reputation for producing a reliable supply of high-quality barley in a contaminant-free climate. As a result, Australian barley is highly sought after by malting, brewing, distilling, and feed industries worldwide. Barley is traded as a variety-specific commodity on the international market for food, brewing and distilling end-use, as the intrinsic quality of the variety determines its market value. Manual identification of barley varieties by the naked eye is challenging and time-consuming for all stakeholders, including growers, grain handlers and traders. Current industrial methods for identifying barley varieties include molecular protein weights or DNA based technology, which are not only time-consuming and costly but need specific laboratory equipment. On grain receival, there is a need for efficient and low-cost solutions for barley classification to ensure accurate and effective variety segregation. This paper proposes an efficient deep learning-based technique that can classify barley varieties from RGB images. Our proposed technique takes only four milliseconds to classify an RGB image. The proposed technique outperforms the baseline method and achieves a barley classification accuracy of 94% across 14 commercial barley varieties (some highly genetically related)
    corecore