198 research outputs found
Involvement of COX-2/PGE2 Pathway in the Upregulation of MMP-9 Expression in Pancreatic Cancer
COX-2 and MMP-9 have been reported to show an overexpression in pancreatic cancer, and thus an attempt to explore the correlation between them has become a target of this study. Besides, PGE2, a product of COX-2, was also under research as to whether it is involved in the upregulation of MMP-9 expression by COX-2. Expression of COX-2 and MMP-9 mRNA varied in pancreatic adenocarcinomas, and the mRNA level of COX-2 was correlated positively with MMP-9. Both BxPC-3 and Capan-1 cells had strong expression of COX-2 and MMP-9. MMP-9 expression was downregulated significantly in BxPC-3 and Capan-1 cells after treatment with COX-2 inhibitors or COX-2 siRNA plasmids, and upregulated in BxPC-3 significantly by exogenous TNF-α, LPS or PGE2. The upregulation of MMP-9 by TNF-α or LPS was inhibited by COX-2 inhibitor NS398. There was a significant increase in the migration of BxPC-3 cells with TNF-α, LPS, or PGE2 treatment; however, the increase caused by TNF-α or LPS was also inhibited remarkably by NS398. Our findings demonstrated that COX-2 upregulates MMP-9 expression in pancreatic cancer, and PGE2 may be involved in it
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology
Registration for Optical Multimodal Remote Sensing Images Based on FAST Detection,Window Selection, and Histogram Specification
In recent years, digital frame cameras have been increasingly used for remote sensing applications. However, it is always a challenge to align or register images captured with different cameras or different imaging sensor units. In this research, a novel registration method was proposed. Coarse registration was first applied to approximately align the sensed and reference images. Window selection was then used to reduce the search space and a histogram specification was applied to optimize the grayscale similarity between the images. After comparisons with other commonly-used detectors, the fast corner detector, FAST (Features from Accelerated Segment Test), was selected to extract the feature points. The matching point pairs were then detected between the images, the outliers were eliminated, and geometric transformation was performed. The appropriate window size was searched and set to one-tenth of the image width. The images that were acquired by a two-camera system, a camera with five imaging sensors, and a camera with replaceable filters mounted on a manned aircraft, an unmanned aerial vehicle, and a ground-based platform, respectively, were used to evaluate the performance of the proposed method. The image analysis results showed that, through the appropriate window selection and histogram specification, the number of correctly matched point pairs had increased by 11.30 times, and that the correct matching rate had increased by 36%, compared with the results based on FAST alone. The root mean square error (RMSE) in the x and y directions was generally within 0.5 pixels. In comparison with the binary robust invariant scalable keypoints (BRISK), curvature scale space (CSS), Harris, speed up robust features (SURF), and commercial software ERDAS and ENVI, this method resulted in larger numbers of correct matching pairs and smaller, more consistent RMSE. Furthermore, it was not necessary to choose any tie control points manually before registration. The results from this study indicate that the proposed method can be effective for registering optical multimodal remote sensing images that have been captured with different imaging sensors
Crop Classification and LAI Estimation Using Original and Resolution-Reduced Images from Two Consumer-Grade Cameras
Consumer-grade cameras are being increasingly used for remote sensing applications in recent years. However, the performance of this type of cameras has not been systematically tested and well documented in the literature. The objective of this research was to evaluate the performance of original and resolution-reduced images taken from two consumer-grade cameras, a RGB camera and a modified near-infrared (NIR) camera, for crop identification and leaf area index (LAI) estimation. Airborne RGB and NIR images taken over a 6.5-square-km cropping area were mosaicked and aligned to create a four-band mosaic with a spatial resolution of 0.4 m. The spatial resolution of the mosaic was then reduced to 1, 2, 4, 10, 15 and 30 m for comparison. Six supervised classifiers were applied to the RGB images and the four-band images for crop identification, and 10 vegetation indices (VIs) derived from the images were related to ground-measured LAI. Accuracy assessment showed that maximum likelihood applied to the 0.4-m images achieved an overall accuracy of 83.3% for the RGB image and 90.4% for the four-band image. Regression analysis showed that the 10 VIs explained 58.7% to 83.1% of the variability in LAI. Moreover, spatial resolutions at 0.4, 1, 2 and 4 m achieved better classification results for both crop identification and LAI prediction than the coarser spatial resolutions at 10, 15 and 30 m. The results from this study indicate that imagery from consumer-grade cameras can be a useful data source for crop identification and canopy cover estimation
Crop Classification and LAI Estimation Using Original and Resolution-Reduced Images from Two Consumer-Grade Cameras
Consumer-grade cameras are being increasingly used for remote sensing applications in recent years. However, the performance of this type of cameras has not been systematically tested and well documented in the literature. The objective of this research was to evaluate the performance of original and resolution-reduced images taken from two consumer-grade cameras, a RGB camera and a modified near-infrared (NIR) camera, for crop identification and leaf area index (LAI) estimation. Airborne RGB and NIR images taken over a 6.5-square-km cropping area were mosaicked and aligned to create a four-band mosaic with a spatial resolution of 0.4 m. The spatial resolution of the mosaic was then reduced to 1, 2, 4, 10, 15 and 30 m for comparison. Six supervised classifiers were applied to the RGB images and the four-band images for crop identification, and 10 vegetation indices (VIs) derived from the images were related to ground-measured LAI. Accuracy assessment showed that maximum likelihood applied to the 0.4-m images achieved an overall accuracy of 83.3% for the RGB image and 90.4% for the four-band image. Regression analysis showed that the 10 VIs explained 58.7% to 83.1% of the variability in LAI. Moreover, spatial resolutions at 0.4, 1, 2 and 4 m achieved better classification results for both crop identification and LAI prediction than the coarser spatial resolutions at 10, 15 and 30 m. The results from this study indicate that imagery from consumer-grade cameras can be a useful data source for crop identification and canopy cover estimation
Crop Classification and LAI Estimation Using Original and Resolution-Reduced Images from Two Consumer-Grade Cameras
Consumer-grade cameras are being increasingly used for remote sensing applications in recent years. However, the performance of this type of cameras has not been systematically tested and well documented in the literature. The objective of this research was to evaluate the performance of original and resolution-reduced images taken from two consumer-grade cameras, a RGB camera and a modified near-infrared (NIR) camera, for crop identification and leaf area index (LAI) estimation. Airborne RGB and NIR images taken over a 6.5-square-km cropping area were mosaicked and aligned to create a four-band mosaic with a spatial resolution of 0.4 m. The spatial resolution of the mosaic was then reduced to 1, 2, 4, 10, 15 and 30 m for comparison. Six supervised classifiers were applied to the RGB images and the four-band images for crop identification, and 10 vegetation indices (VIs) derived from the images were related to ground-measured LAI. Accuracy assessment showed that maximum likelihood applied to the 0.4-m images achieved an overall accuracy of 83.3% for the RGB image and 90.4% for the four-band image. Regression analysis showed that the 10 VIs explained 58.7% to 83.1% of the variability in LAI. Moreover, spatial resolutions at 0.4, 1, 2 and 4 m achieved better classification results for both crop identification and LAI prediction than the coarser spatial resolutions at 10, 15 and 30 m. The results from this study indicate that imagery from consumer-grade cameras can be a useful data source for crop identification and canopy cover estimation
The chinese herbal decoction danggui buxue tang inhibits angiogenesis in a rat model of liver fibrosis.
In this study, we investigated the anti-angiogenic effect of the Chinese herbal decoction Danggui Buxue Tang (DBT; Radix Astragali and Radix Angelicae sinensis in 5 : 1 ratio) in a rat model of liver fibrosis, in order to elucidate its mechanisms of action against liver fibrosis. Liver fibrosis was induced with CCl(4) and high-fat food for 6 weeks, and the rats were treated with oral doses of DBT (6 g raw herbs/kg/d) and N-Acetyl-L-cysteine (NAC; 0.1 g/kg/d). The results showed that both DBT and NAC attenuated liver fibrosis and neo-angiogenesis. Furthermore, DBT and NAC improved SOD activity but decreased MDA content and 8-OH-dG in fibrotic livers, with DBT being more effective than NAC. DBT decreased the expression of VEGF, Ang1 and TGF-β1 and their signaling mediators, whereas NAC had no effect on VEGF and VEGFR2 expression. Both DBT and NAC reduced HIF-1α gene and protein expression in fibrotic livers, with DBT being more effective. These data clearly demonstrate that the anti-fibrotic properties of DBT are related to its ability to inhibit angiogenesis and its anti-angiogenic mechanisms are associated with improving oxidative stress, regulating the expression and signaling of angiogenic factors, and especially modulating HIF-1α in fibrotic livers
Rapeseed Seedling Stand Counting and Seeding Performance Evaluation at Two Early Growth Stages Based on Unmanned Aerial Vehicle Imagery
The development of unmanned aerial vehicles (UAVs) and image processing algorithms for field-based phenotyping offers a non-invasive and effective technology to obtain plant growth traits such as canopy cover and plant height in fields. Crop seedling stand count in early growth stages is important not only for determining plant emergence, but also for planning other related agronomic practices. The main objective of this research was to develop practical and rapid remote sensing methods for early growth stage stand counting to evaluate mechanically seeded rapeseed (Brassica napus L.) seedlings. Rapeseed was seeded in a field by three different seeding devices. A digital single-lens reflex camera was installed on an UAV platform to capture ultrahigh resolution RGB images at two growth stages when most rapeseed plants had at least two leaves. Rapeseed plant objects were segmented from images of vegetation indices using typical Otsu thresholding method. After segmentation, shape features such as area, length-width ratio and elliptic fit were extracted from the segmented rapeseed plant objects to establish regression models of seedling stand count. Three row characteristics (the coefficient of variation of row spacing uniformity, the error rate of the row spacing and the coefficient of variation of seedling uniformity) were further calculated for seeding performance evaluation after crop row detection. Results demonstrated that shape features had strong correlations with ground-measured seedling stand count. The regression models achieved R-squared values of 0.845 and 0.867, respectively, for the two growth stages. The mean absolute errors of total stand count were 9.79 and 5.11% for the two respective stages. A single model over these two stages had an R-squared value of 0.846, and the total number of rapeseed plants was also accurately estimated with an average relative error of 6.83%.Moreover, the calculated row characteristics were demonstrated to be useful in recognizing areas of failed germination possibly resulted from skipped or ineffective planting. In summary, this study developed practical UAV-based remote sensing methods and demonstrated the feasibility of using the methods for rapeseed seedling stand counting and mechanical seeding performance evaluation at early growth stages
Crop Classification and LAI Estimation Using Original and Resolution-Reduced Images from Two Consumer-Grade Cameras
Consumer-grade cameras are being increasingly used for remote sensing applications in recent years. However, the performance of this type of cameras has not been systematically tested and well documented in the literature. The objective of this research was to evaluate the performance of original and resolution-reduced images taken from two consumer-grade cameras, a RGB camera and a modified near-infrared (NIR) camera, for crop identification and leaf area index (LAI) estimation. Airborne RGB and NIR images taken over a 6.5-square-km cropping area were mosaicked and aligned to create a four-band mosaic with a spatial resolution of 0.4 m. The spatial resolution of the mosaic was then reduced to 1, 2, 4, 10, 15 and 30 m for comparison. Six supervised classifiers were applied to the RGB images and the four-band images for crop identification, and 10 vegetation indices (VIs) derived from the images were related to ground-measured LAI. Accuracy assessment showed that maximum likelihood applied to the 0.4-m images achieved an overall accuracy of 83.3% for the RGB image and 90.4% for the four-band image. Regression analysis showed that the 10 VIs explained 58.7% to 83.1% of the variability in LAI. Moreover, spatial resolutions at 0.4, 1, 2 and 4 m achieved better classification results for both crop identification and LAI prediction than the coarser spatial resolutions at 10, 15 and 30 m. The results from this study indicate that imagery from consumer-grade cameras can be a useful data source for crop identification and canopy cover estimation
Chemical Forms and Distribution Characteristics of Phosphorus in the Sediments of the Anning Phosphate Mining Area, Yunan Province
The chemical forms and content of phosphorus in sediments are the important basis for exploring bioavailability, migration, and transformation of phosphorus in sediments accurately. To assess and evaluate phosphorous pollution from a phosphate mine, the phosphorus chemical forms in the sediment were determined by a suggested combined method and studied by the phosphorus classification method. The results show that the total phosphorus content all reached the lowest level of ecotoxic effect, and 56.7% of samples reached the serious level of ecotoxic effect. Therefore, it is suggested to strengthen the monitoring and assessment of river pollutants in phosphate mining areas. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202209050164
- …
