101 research outputs found
Altered expression pattern of miR-29a, miR-29b and the target genes in myeloid leukemia
OBJECTIVES: The miR-29 family have been demonstrated acting as vital tumor suppressor in multiple cancers as well as regulators in the adaptive immune system. Little is known about their role in leukemogenesis. The purpose of this study is to analyze the expression pattern of miR-29a/29b and its target genes Mcl-1 (myeloid cell leukemia sequence 1) and B-cell lymphoma 2 (Bcl-2) in myeloid leukemia. METHODS: Quantitative real-time PCR was used for detecting genes expression level in peripheral blood mononuclear cells (PBMCs) from 10 cases with newly diagnosed, untreated acute myeloid leukemia (AML) and 14 cases with newly diagnosed, untreated chronic myeloid leukemia (CML) in chronic phase, and 14 healthy individual (HI) served as controls. Correlation between the relative expression levels of different genes have been analyzed. RESULTS: Significant lower expression of miR-29a/29b and higher expression level of two potential target genes Bcl-2 and Mcl-1 were found in PBMCs from AML and CML patients compared with HI group. In addtion, miR-29a expression in AML was significantly lower than that in CML. Moreover, negative correlation between miR-29a/29b and its target genes have been found. While, positive correlation between relative expression level of miR-29a and miR-29b or Bcl-2 and Mcl-1 were presented in the total 38 research objects. CONCLUSION: Down-regulated miR-29a and miR-29b, and accompanying up-regulated Bcl-2 and Mcl-1 are the common feature in myeloid leukemias. These data further support the role for miR-29a/29b dysregulation in myeloid leukemogenesis and the therapeutic promise of regulating miR-29a/29b expression for myeloid leukemia in the future
Color-induced changes in Chrysanthemum morifolium: an integrative transcriptomic and metabolomic analysis of petals and non-petals
Chrysanthemum morifolium (CM), renowned for its diverse and vibrant varieties, holds significant ornamental and medicinal value. Despite this, the core regulatory mechanisms underlying its coloration, especially in non-petal tissues (i.e., the parts of CM that do not include petals, such as the reproductive tissues, receptacle and calyx), have been insufficiently studied. In this study, we performed transcriptomic and metabolomic analyses on yellow, gold, and white CM petals, as well as non-petal tissues, to investigate the molecular processes driving color variation. A total of 90 differential metabolites were identified, with flavonoids, their derivatives, and lipids emerging as the predominant components of the metabolic profile. At the transcriptional level, 38 pathways were significantly enriched based on the expression of differential genes. The combined metabolomic and transcriptomic analyses revealed that glycerophospholipid metabolism, primarily involving lipids, served as a key regulatory pathway for both petal and non-petal parts across different tissue colors. Notably, white CM exhibited marked differences from their gold and yellow counterparts at both the metabolic and transcriptional levels. These findings offer critical insights into the molecular mechanisms governing CM coloration and provide a foundation for optimizing future breeding efforts
Exploration of the hypoglycemic mechanism of Fuzhuan brick tea based on integrating global metabolomics and network pharmacology analysis
Introduction: Fuzhuan brick tea (FBT) is a worldwide popular beverage which has the appreciable potential in regulating glycometabolism. However, the reports on the hypoglycemic mechanism of FBT remain limited.Methods: In this study, the hypoglycemic effect of FBT was evaluated in a pharmacological experiment based on Kunming mice. Global metabolomics and network pharmacology were combined to discover the potential target metabolites and genes. In addition, the real-time quantitative polymerase chain reaction (RT-qPCR) analysis was performed for verification.Results: Seven potential target metabolites and six potential target genes were screened using the integrated approach. After RT-qPCR analysis, it was found that the mRNA expression of VEGFA, KDR, MAPK14, and PPARA showed significant differences between normal and diabetes mellitus mice, with a retracement after FBT treatment.Conclusion: These results indicated that the hypoglycemic effect of FBT was associated with its anti-inflammatory activities and regulation of lipid metabolism disorders. The exploration of the hypoglycemic mechanism of FBT would be meaningful for its further application and development
Pathways related to PMA-differentiated THP1 human monocytic leukemia cells revealed by RNA-Seq
A polymethoxyflavone from Laggera pterodonta induces apoptosis in imatinib-resistant K562R cells via activation of the intrinsic apoptosis pathway
Overexpression of the long non-coding RNA PVT1 is correlated with leukemic cell proliferation in acute promyelocytic leukemia
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
The role of NFAT in the pathogenesis and targeted therapy of hematological malignancies
Disulfiram, an aldehyde dehydrogenase inhibitor, works as a potent drug against sepsis and cancer via NETosis, pyroptosis, apoptosis, ferroptosis, and cuproptosis
Regulated cell death (RCD) is essential for maintaining cell homeostasis and preventing diseases. Besides classical apoptosis, several novel nonapoptotic forms of RCD including NETosis, pyroptosis, ferroptosis, and cuproptosis have been reported and are increasingly being implicated in various cancers and inflammation. Disulfiram (DSF), an aldehyde dehydrogenase inhibitor, has been used clinically for decades as an anti-alcoholic drug. New studies have shown that DSF possesses potent anti-inflammatory and anti-cancer effects by regulating these new types of RCD. Here, we summarize the mechanisms and discuss the potential application of DSF in the treatment of cancers and inflammatory diseases
- …
