343 research outputs found
Editorial: Mechanisms during bacterial infection: cellular recognition, signalling, and regulation
Purification and characterization of a thermostable ADP-glucose pyrophosphorylase from Thermus caldophilus GK-24
Triptolide-Mediated Apoptosis by Suppression of Focal Adhesion Kinase through Extrinsic and Intrinsic Pathways in Human Melanoma Cells
Triptolide (TPL) has been shown to inhibit cell proliferation and induce apoptosis in various human cancer cells; however, the precise mechanism of apoptosis induced by TPL in human melanoma cells has not yet been elucidated. In this study, we investigated the precise mechanism underlying cytocidal effects of TPL on human melanoma cells. Treatment of human melanoma cells with TPL significantly inhibited cell growth and induced apoptosis, as evidenced by flow cytometry and annexin V-fluorescein isothiocyanate analyses. TPL increased the levels of Fas and Fas-associated death domain (FADD) and induced cleavage of Bid by activation of caspase-8 and cytochrome c release from mitochondria to the cytosol, which resulted in activation of caspase-9 and caspase-3. Moreover, TPL-induced apoptosis in SK-MEL-2 cells was mediated through dephosphorylation of focal adhesion kinase (FAK) and its cleavage by caspase-8-mediated caspase-3 activation via upregulation of Fas expression. We also found that TPL mediated the dissociation of receptor-interacting protein (RIP) from FAK and enhanced the formation of RIP/Fas complex formation initiating cell death. In conclusion, our data firstly demonstrated that TPL induces apoptosis by both extrinsic and intrinsic apoptosis pathways in human melanoma cells and identified that RIP shuttles between Fas and FAK to mediate apoptosis
4-O-Carboxymethylascochlorin Inhibits Expression Levels of on Inflammation-Related Cytokines and Matrix Metalloproteinase-9 Through NF–κB/MAPK/TLR4 Signaling Pathway in LPS-Activated RAW264.7 Cells
Toll-like receptor 4 (TLR4) and matrix metalloproteinase-9 (MMP-9) are known to play important roles in inflammatory diseases such as arteriosclerosis and plaque instability. The purpose of this study was to perform the effect of 4-O-carboxymethylascochlorin (AS-6) on MMP-9 expression in lipopolysaccharide (LPS)-induced murine macrophages and signaling pathway involved in its anti-inflammatory effect. Effect of AS-6 on MAPK/NF-κB/TLR4 signaling pathway in LPS-activated murine macrophages was examined using ELISA, Western blotting, reverse transcription polymerase chain reaction (RT-PCR) and fluorescence immunoassay. MMP-9 enzyme activity was examined by gelatin zymography. AS-6 significantly suppressed MMP-9 and MAPK/NF-κB expression levels in LPS-stimulated murine macrophages. Expression levels of inducible nitric oxide synthase (iNOS), COX2, MMP-9, JNK, ERK, p38 phosphorylation, and NF-κB stimulated by LPS were also decreased by AS-6. Moreover, AS-6 suppressed TLR4 expression and dysregulated LPS-induced activators of transcription signaling pathway. The results of this study showed that AS-6 can inhibit LPS-stimulated inflammatory response by suppressing TLR4/MAPK/NF-κB signals, suggesting that AS-6 can be used to induce the stability of atherosclerotic plaque and prevent inflammatory diseases in an in vitro model
Sialic Acid (N-Acetylneuraminic Acid) as the Functional Molecule for Differentiation between Animal and Plant Kingdom
- …
