430 research outputs found

    Uniform attractors for non-autonomous wave equations with nonlinear damping

    Full text link
    We consider dynamical behavior of non-autonomous wave-type evolutionary equations with nonlinear damping, critical nonlinearity, and time-dependent external forcing which is translation bounded but not translation compact (i.e., external forcing is not necessarily time-periodic, quasi-periodic or almost periodic). A sufficient and necessary condition for the existence of uniform attractors is established using the concept of uniform asymptotic compactness. The required compactness for the existence of uniform attractors is then fulfilled by some new a priori estimates for concrete wave type equations arising from applications. The structure of uniform attractors is obtained by constructing a skew product flow on the extended phase space for the norm-to-weak continuous process.Comment: 33 pages, no figur

    Averaging of equations of viscoelasticity with singularly oscillating external forces

    Full text link
    Given ρ[0,1]\rho\in[0,1], we consider for ε(0,1]\varepsilon\in(0,1] the nonautonomous viscoelastic equation with a singularly oscillating external force ttuκ(0)Δu0κ(s)Δu(ts)ds+f(u)=g0(t)+ερg1(t/ε) \partial_{tt} u-\kappa(0)\Delta u - \int_0^\infty \kappa'(s)\Delta u(t-s) d s +f(u)=g_{0}(t)+\varepsilon ^{-\rho }g_{1}(t/\varepsilon ) together with the {\it averaged} equation ttuκ(0)Δu0κ(s)Δu(ts)ds+f(u)=g0(t). \partial_{tt} u-\kappa(0)\Delta u - \int_0^\infty \kappa'(s)\Delta u(t-s) d s +f(u)=g_{0}(t). Under suitable assumptions on the nonlinearity and on the external force, the related solution processes Sε(t,τ)S_\varepsilon(t,\tau) acting on the natural weak energy space H{\mathcal H} are shown to possess uniform attractors Aε{\mathcal A}^\varepsilon. Within the further assumption ρ<1\rho<1, the family Aε{\mathcal A}^\varepsilon turns out to be bounded in H{\mathcal H}, uniformly with respect to ε[0,1]\varepsilon\in[0,1]. The convergence of the attractors Aε{\mathcal A}^\varepsilon to the attractor A0{\mathcal A}^0 of the averaged equation as ε0\varepsilon\to 0 is also established

    Infinite energy solutions for Dissipative Euler equations in R^2

    Get PDF
    We study the Euler equations with the so-called Ekman damping in the whole 2D space. The global well-posedness and dissipativity for the weak infinite energy solutions of this problem in the uniformly local spaces is verified based on the further development of the weighted energy theory for the Navier-Stokes and Euler type problems. In addition, the existence of weak locally compact global attractor is proved and some extra compactness of this attractor is obtained.Comment: arXiv admin note: text overlap with arXiv:1203.573

    Lower semicontinuity of attractors for non-autonomous dynamical systems

    Get PDF
    This paper is concerned with the lower semicontinuity of attractors for semilinear non-autonomous differential equations in Banach spaces. We require the unperturbed attractor to be given as the union of unstable manifolds of time-dependent hyperbolic solutions, generalizing previous results valid only for gradient-like systems in which the hyperbolic solutions are equilibria. The tools employed are a study of the continuity of the local unstable manifolds of the hyperbolic solutions and results on the continuity of the exponential dichotomy of the linearization around each of these solutions

    Trajectory attractors for the Sun-Liu model for nematic liquid crystals in 3D

    Full text link
    In this paper we prove the existence of a trajectory attractor (in the sense of V.V. Chepyzhov and M.I. Vishik) for a nonlinear PDE system coming from a 3D liquid crystal model accounting for stretching effects. The system couples a nonlinear evolution equation for the director d (introduced in order to describe the preferred orientation of the molecules) with an incompressible Navier-Stokes equation for the evolution of the velocity field u. The technique is based on the introduction of a suitable trajectory space and of a metric accounting for the double-well type nonlinearity contained in the director equation. Finally, a dissipative estimate is obtained by using a proper integrated energy inequality. Both the cases of (homogeneous) Neumann and (non-homogeneous) Dirichlet boundary conditions for d are considered.Comment: 32 page

    Some qualitative properties of the solutions of the Magnetohydrodynamic equations for nonlinear bipolar fluids

    Full text link
    In this article we study the long-time behaviour of a system of nonlinear Partial Differential Equations (PDEs) modelling the motion of incompressible, isothermal and conducting modified bipolar fluids in presence of magnetic field. We mainly prove the existence of a global attractor denoted by \A for the nonlinear semigroup associated to the aforementioned systems of nonlinear PDEs. We also show that this nonlinear semigroup is uniformly differentiable on \A. This fact enables us to go further and prove that the attractor \A is of finite-dimensional and we give an explicit bounds for its Hausdorff and fractal dimensions.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/s10440-014-9964-

    Quantum Noise Randomized Ciphers

    Full text link
    We review the notion of a classical random cipher and its advantages. We sharpen the usual description of random ciphers to a particular mathematical characterization suggested by the salient feature responsible for their increased security. We describe a concrete system known as AlphaEta and show that it is equivalent to a random cipher in which the required randomization is effected by coherent-state quantum noise. We describe the currently known security features of AlphaEta and similar systems, including lower bounds on the unicity distances against ciphertext-only and known-plaintext attacks. We show how AlphaEta used in conjunction with any standard stream cipher such as AES (Advanced Encryption Standard) provides an additional, qualitatively different layer of security from physical encryption against known-plaintext attacks on the key. We refute some claims in the literature that AlphaEta is equivalent to a non-random stream cipher.Comment: Accepted for publication in Phys. Rev. A; Discussion augmented and re-organized; Section 5 contains a detailed response to 'T. Nishioka, T. Hasegawa, H. Ishizuka, K. Imafuku, H. Imai: Phys. Lett. A 327 (2004) 28-32 /quant-ph/0310168' & 'T. Nishioka, T. Hasegawa, H. Ishizuka, K. Imafuku, H. Imai: Phys. Lett. A 346 (2005) 7
    corecore