1,180 research outputs found

    An exact method for a discrete multiobjective linear fractional optimization

    Get PDF
    Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated

    An exact method for a discrete multiobjective linear fractional optimization

    Get PDF
    Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated.multiobjective programming, integer programming, linear fractional programming, branch and cut

    A microfluidic flow-cell for the study of the ultrafast dynamics of biological systems

    Get PDF
    The study of biochemical dynamics by ultrafast spectroscopic methods is often restricted by the limited amount of liquid sample available, while the high repetition rate of light sources can induce photodamage. In order to overcome these limitations, we designed a high flux, sub-ml, capillary flow-cell. While the 0.1 mm thin window of the 0.5 mm cross-section capillary ensures an optimal temporal resolution and a steady beam deviation, the cell-pump generates flows up to ∼0.35 ml/s that are suitable to pump laser repetition rates up to ∼14 kHz, assuming a focal spot-diameter of 100 μm. In addition, a decantation chamber efficiently removes bubbles and allows, via septum, for the addition of chemicals while preserving the closed atmosphere. The minimal useable amount of sample is ∼250 μl

    Coupling of a high-energy excitation to superconducting quasiparticles in a cuprate from Coherent Charge Fluctuation Spectroscopy

    Full text link
    Dynamical information on spin degrees of freedom of proteins or solids can be obtained by Nuclear Magnetic Resonance (NMR) and Electron Spin Resonance (ESR). A technique with similar versatility for charge degrees of freedom and their ultrafast correlations could move forward the understanding of systems like unconventional superconductors. By perturbing the superconducting state in a high-Tc cuprate using a femtosecond laser pulse, we generate coherent oscillations of the Cooper pair condensate which can be described by an NMR/ESR formalism. The oscillations are detected by transient broad-band reflectivity and found to resonate at the typical scale of Mott physics (2.6 eV), suggesting the existence of a non-retarded contribution to the pairing interaction, as in unconventional (non Migdal-Eliashberg) theories.Comment: Accepted for publication in the Proceedings of the National Academy of Sciences of the U.S.A. (PNAS

    Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid

    Full text link
    The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material's crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong Coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with it ab initio} electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time.Comment: Accepted for publication in Proc. Natl. Acad. Sci. US

    Ultrafast Electronic and Structural Phenomena in Graphite and Graphene

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 - August 5, 201
    corecore