1,180 research outputs found
An exact method for a discrete multiobjective linear fractional optimization
Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated
An exact method for a discrete multiobjective linear fractional optimization
Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated.multiobjective programming, integer programming, linear fractional programming, branch and cut
A microfluidic flow-cell for the study of the ultrafast dynamics of biological systems
The study of biochemical dynamics by ultrafast spectroscopic methods is often restricted by the limited amount of liquid sample available, while the high repetition rate of light sources can induce photodamage. In order to overcome these limitations, we designed a high flux, sub-ml, capillary flow-cell. While the 0.1 mm thin window of the 0.5 mm cross-section capillary ensures an optimal temporal resolution and a steady beam deviation, the cell-pump generates flows up to ∼0.35 ml/s that are suitable to pump laser repetition rates up to ∼14 kHz, assuming a focal spot-diameter of 100 μm. In addition, a decantation chamber efficiently removes bubbles and allows, via septum, for the addition of chemicals while preserving the closed atmosphere. The minimal useable amount of sample is ∼250 μl
Coupling of a high-energy excitation to superconducting quasiparticles in a cuprate from Coherent Charge Fluctuation Spectroscopy
Dynamical information on spin degrees of freedom of proteins or solids can be
obtained by Nuclear Magnetic Resonance (NMR) and Electron Spin Resonance (ESR).
A technique with similar versatility for charge degrees of freedom and their
ultrafast correlations could move forward the understanding of systems like
unconventional superconductors. By perturbing the superconducting state in a
high-Tc cuprate using a femtosecond laser pulse, we generate coherent
oscillations of the Cooper pair condensate which can be described by an NMR/ESR
formalism. The oscillations are detected by transient broad-band reflectivity
and found to resonate at the typical scale of Mott physics (2.6 eV), suggesting
the existence of a non-retarded contribution to the pairing interaction, as in
unconventional (non Migdal-Eliashberg) theories.Comment: Accepted for publication in the Proceedings of the National Academy
of Sciences of the U.S.A. (PNAS
Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid
The effect of dimensionality on materials properties has become strikingly
evident with the recent discovery of graphene. Charge ordering phenomena can be
induced in one dimension by periodic distortions of a material's crystal
structure, termed Peierls ordering transition. Charge-density waves can also be
induced in solids by strong Coulomb repulsion between carriers, and at the
extreme limit, Wigner predicted that crystallization itself can be induced in
an electrons gas in free space close to the absolute zero of temperature.
Similar phenomena are observed also in higher dimensions, but the microscopic
description of the corresponding phase transition is often controversial, and
remains an open field of research for fundamental physics. Here, we photoinduce
the melting of the charge ordering in a complex three-dimensional solid and
monitor the consequent charge redistribution by probing the optical response
over a broad spectral range with ultrashort laser pulses. Although the
photoinduced electronic temperature far exceeds the critical value, the
charge-density wave is preserved until the lattice is sufficiently distorted to
induce the phase transition. Combining this result with it ab initio}
electronic structure calculations, we identified the Peierls origin of multiple
charge-density waves in a three-dimensional system for the first time.Comment: Accepted for publication in Proc. Natl. Acad. Sci. US
Ultrafast Electronic and Structural Phenomena in Graphite and Graphene
Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 - August 5, 201
- …
