960 research outputs found

    Order and excitations in large-SS kagom\'e-lattice antiferromagnets

    Full text link
    We systematically investigate the ground-state and the spectral properties of antiferromagnets on a kagom\'{e} lattice with several common types of the planar anisotropy: XXZXXZ, single-ion, and out-of-plane Dzyaloshinskii-Moriya. Our main focus is on the role of nonlinear, anharmonic terms, which are responsible for the quantum order-by-disorder effect and for the corresponding selection of the ground-state spin structure in many of these models. The XXZXXZ and the single-ion anisotropy models exhibit a quantum phase transition between the q ⁣= ⁣0{\bf q}\!=\!0 and the 3× ⁣3\sqrt{3}\times\!\sqrt{3} states as a function of the anisotropy parameter, offering a rare example of the quantum order-by-disorder fluctuations favoring a ground state which is different from the one selected by thermal fluctuations. The nonlinear terms are also shown to be crucial for a very strong near-resonant decay phenomenon leading to the quasiparticle breakdown in the kagom\'{e}-lattice antiferromagnets whose spectra are featuring flat or weakly dispersive modes. The effect is shown to persist even in the limit of large spin values and should be common to other frustrated magnets with flat branches of excitations. Model calculations of the spectrum of the S=5/2S=5/2 Fe-jarosite with Dzyaloshinskii-Moriya anisotropy provide a convincing and detailed characterization of the proposed scenario.Comment: 17 pages, 13 figures, published version. Recipient of the PRB beauty award (Editors' Suggestion

    Quantum Selection of Order in an XXZXXZ Antiferromagnet on a Kagom\'e Lattice

    Full text link
    Selection of the ground state of the kagom\'e-lattice XXZXXZ antiferromagnet by quantum fluctuations is investigated by combining non-linear spin-wave and real-space perturbation theories. The two methods unanimously favor q=0{\bf q}=0 over 3×3\sqrt{3}\times\sqrt{3} magnetic order in a wide range of the anisotropy parameter 0Δ0.720\leq \Delta\leq 0.72. Both approaches are also in an accord on the magnitude of the quantum order-by-disorder effect generated by topologically non-trivial, loop-like spin-flip processes. A tentative SΔS-\Delta phase diagram of the model is proposed.Comment: 5 pages, 4 figures + 6.2 pages, 4 figures supplemental, minor changes, accepted versio

    Roton-Phonon Interactions in Superfluid 4He

    Get PDF
    High-resolution neutron resonance spin-echo measurements of superfluid 4He show that the roton energy does not have the same temperature dependence as the inverse lifetime. Diagrammatic analysis attributes this to the interaction of rotons with thermally excited phonons via both four- and three-particle processes, the latter being allowed by the broken gauge symmetry of the Bose condensate. The distinct temperature dependence of the roton energy at low temperatures suggests that the net roton-phonon interaction is repulsive.Comment: 5 pages, accepted versio

    Field-induced decay dynamics in square-lattice antiferromagnet

    Full text link
    Dynamical properties of the square-lattice Heisenberg antiferromagnet in applied magnetic field are studied for arbitrary value S of the spin. Above the threshold field for two-particle decays, the standard spin-wave theory yields singular corrections to the excitation spectrum with logarithmic divergences for certain momenta. We develop a self-consistent approximation applicable for S >= 1, which avoids such singularities and provides regularized magnon decay rates. Results for the dynamical structure factor obtained in this approach are presented for S = 1 and S = 5/2.Comment: 12 pages, 11 figures, final versio

    Crystal structure of mixed fluorites Ca(1-x)Sr(x)F(2) and Sr(1-x)Ba(x)F(2) and luminescence of Eu(2+) in the crystals

    Full text link
    Within the framework of the virtual crystal method implemented in the shell model and pair potential approximation the crystal structure of mixed fluorites Ca(1-x)Sr(x)F(2) and Sr(1-x)Ba(x)F(2) has been calculated. The impurity center Eu(2+) and the distance Eu(2+)-F in this crystals have been also calculated. The low level position of excited 4f65d configuration of the Eu(2+) ion has been expressed using phenomenological dependence on distance E(2+)-F. The dependences of Stokes shift and Huang-Rhys factor on concentration x have been received for yellow luminescence in Sr(1-x)Ba(x)F(2):Eu(2+). The value x, for which the eg -level of Eu(2+) ion will be in conduction band in Sr(1-x)Ba(x)F(2):Eu(2+) has been calculated.Comment: 8 pages, 3 figures. The manuscript is sent to journal 'Physics of the solid state'. The results will be submitted on inernational conference SCINTMAT'2002 in oral session (june,20-22,2002,Ekaterinburg,Russia). Corresponding author e-mail: [email protected]

    Lifetime of Gapped Excitations in a Collinear Quantum Antiferromagnet

    Get PDF
    We demonstrate that local modulations of magnetic couplings have a profound effect on the temperature dependence of the relaxation rate of optical magnons in a wide class of antiferromagnets in which gapped excitations coexist with acoustic spin waves. In a two-dimensional collinear antiferromagnet with an easy-plane anisotropy, the disorder-induced relaxation rate of the gapped mode, Gamma_imp=Gamma_0+A(TlnT)^2, greatly exceeds the magnon-magnon damping, Gamma_m-m=BT^5, negligible at low temperatures. We measure the lifetime of gapped magnons in a prototype XY antiferromagnet BaNi2(PO4)2 using a high-resolution neutron-resonance spin-echo technique and find experimental data in close accord with the theoretical prediction. Similarly strong effects of disorder in the three-dimensional case and in noncollinear antiferromagnets are discussed.Comment: 4.5 pages + 2.5 pages supplementary material, published versio

    Instability of antiferromagnetic magnons in strong fields

    Full text link
    We predict that spin-waves in an ordered quantum antiferromagnet (AFM) in a strong magnetic field become unstable with respect to spontaneous two-magnon decays. At zero temperature, the instability occurs between the threshold field HH^* and the saturation field HcH_c. As an example, we investigate the high-field dynamics of a Heisenberg antiferromagnet on a square lattice and show that the single-magnon branch of the spectrum disappears in the most part of the Brillouin zone.Comment: RevTeX, 4 pages, 3 figures, accepted to PR

    Spontaneous Magnon Decays

    Full text link
    A theoretical overview of the phenomenon of spontaneous magnon decays in quantum antiferromagnets is presented. The intrinsic zero-temperature damping of magnons in quantum spin systems is a fascinating many-body effect, which has recently attracted significant attention in view of its possible observation in neutron-scattering experiments. An introduction to the theory of magnon interactions and a discussion of necessary symmetry and kinematic conditions for spontaneous decays are provided. Various parallels with the decays of anharmonic phonons and excitations in superfluid 4He are extensively used. Three principal cases of spontaneous magnon decays are considered: field-induced decays in Heisenberg antiferromagnets, zero-field decays in spiral antiferromagnets, and triplon decays in quantum-disordered magnets. Analytical results are compared with available numerical data and prospective materials for experimental observation of the decay-related effects are briefly discussed.Comment: v3.0, asymptotically close to the published versio
    corecore