828 research outputs found
Multi-wavelength Emission from the Fermi Bubble III. Stochastic (Fermi) Re-Acceleration of Relativistic Electrons Emitted by SNRs
We analyse the model of stochastic re-acceleration of electrons, which are
emitted by supernova remnants (SNRs) in the Galactic Disk and propagate then
into the Galactic halo, in order to explain the origin on nonthermal (radio and
gamma-ray) emission from the Fermi Bubbles (FB). We assume that the energy for
re-acceleration in the halo is supplied by shocks generated by processes of
star accretion onto the central black hole. Numerical simulations show that
regions with strong turbulence (places for electron re-acceleration) are
located high up in the Galactic Halo about several kpc above the disk. The
energy of SNR electrons that reach these regions does not exceed several GeV
because of synchrotron and inverse Compton energy losses. At appropriate
parameters of re-acceleration these electrons can be re-accelerated up to the
energy 10E12 eV which explains in this model the origin of the observed radio
and gamma-ray emission from the FB. However although the model gamma-ray
spectrum is consistent with the Fermi results, the model radio spectrum is
steeper than the observed by WMAP and Planck. If adiabatic losses due to plasma
outflow from the Galactic central regions are taken into account, then the
re-acceleration model nicely reproduces the Planck datapoints.Comment: 33 pages, 8 figures, accepted by Ap
Analytical and numerical studies of central galactic outflows powered by tidal disruption events -- a model for the Fermi bubbles?
Capture and tidal disruption of stars by the supermassive black hole in the
Galactic center (GC) should occur regularly. The energy released and dissipated
by this processes will affect both the ambient environment of the GC and the
Galactic halo. A single star of super-Eddington eruption generates a subsonic
out ow with an energy release of more than erg, which still is not
high enough to push shock heated gas into the halo. Only routine tidal
disruption of stars near the GC can provide enough cumulative energy to form
and maintain large scale structures like the Fermi Bubbles. The average rate of
disruption events is expected to be ~ yr, providing
the average power of energy release from the GC into the halo of dW/dt ~
3*10 erg/s, which is needed to support the Fermi Bubbles. The GC black
hole is surrounded by molecular clouds in the disk, but their overall mass and
filling factor is too low to stall the shocks from tidal disruption events
significantly. The de facto continuous energy injection on timescales of Myr
will lead to the propagation of strong shocks in a density stratified Galactic
halo and thus create elongated bubble-like features, which are symmetric to the
Galactic midplane.Comment: 11 pages, 5 figures. The title and abstract have been changed.
Accepted by Astrophysical Journa
Competing charge density waves and temperature-dependent nesting in 2H-TaSe2
Multiple charge density wave (CDW) phases in 2H-TaSe2 are investigated by
high-resolution synchrotron x-ray diffraction. In a narrow temperature range
immediately above the commensurate CDW transition, we observe a multi-q
superstructure with coexisting commensurate and incommensurate order
parameters, clearly distinct from the fully incommensurate state at higher
temperatures. This multi-q ordered phase, characterized by a temperature
hysteresis, is found both during warming and cooling, in contrast to previous
reports. In the normal state, the incommensurate superstructure reflection
gives way to a broad diffuse peak that persists nearly up to room temperature.
Its position provides a direct and accurate estimate of the Fermi surface
nesting vector, which evolves non-monotonically and approaches the commensurate
position as the temperature is increased. This behavior agrees with our recent
observations of the temperature-dependent Fermi surface in the same compound
[Phys. Rev. B 79, 125112 (2009)]
The Origin of Gamma-Rays from Globular Clusters
Fermi has detected gamma-ray emission from eight globular clusters. We
suggest that the gamma-ray emission from globular clusters may result from the
inverse Compton scattering between relativistic electrons/positrons in the
pulsar wind of MSPs in the globular clusters and background soft photons
including cosmic microwave/relic photons, background star lights in the
clusters, the galactic infrared photons and the galactic star lights. We show
that the gamma-ray spectrum from 47 Tuc can be explained equally well by upward
scattering of either the relic photons, the galactic infrared photons or the
galactic star lights whereas the gamma-ray spectra from other seven globular
clusters are best fitted by the upward scattering of either the galactic
infrared photons or the galactic star lights. We also find that the observed
gamma-ray luminosity is correlated better with the combined factor of the
encounter rate and the background soft photon energy density. Therefore the
inverse Compton scattering may also contribute to the observed gamma-ray
emission from globular clusters detected by Fermi in addition to the standard
curvature radiation process. Furthermore, we find that the emission region of
high energy photons from globular cluster produced by inverse Compton
scattering is substantially larger than the core of globular cluster with a
radius >10pc. The diffuse radio and X-rays emitted from globular clusters can
also be produced by synchrotron radiation and inverse Compton scattering
respectively. We suggest that future observations including radio, X-rays, and
gamma-rays with energy higher than 10 GeV and better angular resolution can
provide better constraints for the models.Comment: Accepted by ApJ, Comments may send to Prof. K.S. Cheng:
[email protected]
Structural disorder versus chiral magnetism in CrNbS
The crystal structure of a disordered form of CrNbS has been
characterized using diffraction and inelastic scattering of synchrotron
radiation. In contrast to the previously reported symmetry (P622), the
crystal can be described by a regular twinning of an average P6 structure
with three disordered positions of the Cr ions. Short-range correlations of the
occupational disorder result in a quite intense and structured diffuse
scattering; a static nature of the disorder was unambiguously attributed by the
inelastic x-ray scattering. The diffuse scattering has been modeled using a
reverse Monte-Carlo algorithm assuming a disorder of the Cr sub-lattice only.
The observed correlated disorder of the Cr sub-lattice reduces the temperature
of the magnetic ordering from 130 K to 88 K and drastically modifies the field
dependence of the magnetization as it is evidenced by the SQUID magnetometery.
We conclude, that in contrast to the helicoidal spin structure assumed for
P622 form, the compound under study is ferromagnetically ordered with a
pronounced in-plane anisotropy
- …
