2,834 research outputs found
Monitoring development control in Hong Kong a probit analysis of planning application for change in use and development in industrial zones /
Thesis (B.Sc)--University of Hong Kong, 2006.published_or_final_versio
Image Reconstruction with a LaBr3-based Rotational Modulator
A rotational modulator (RM) gamma-ray imager is capable of obtaining
significantly better angular resolution than the fundamental geometric
resolution defined by the ratio of detector diameter to mask-detector
separation. An RM imager consisting of a single grid of absorbing slats
rotating ahead of an array of a small number of position-insensitive detectors
has the advantage of fewer detector elements (i.e., detector plane pixels) than
required by a coded aperture imaging system with comparable angular resolution.
The RM therefore offers the possibility of a major reduction in instrument
complexity, cost, and power. A novel image reconstruction technique makes it
possible to deconvolve the raw images, remove sidelobes, reduce the effects of
noise, and provide resolving power a factor of 6 - 8 times better than the
geometric resolution. A 19-channel prototype RM developed in our laboratory at
Louisiana State University features 13.8 deg full-angle field of view, 1.9 deg
geometric angular resolution, and the capability of resolving sources to within
35' separation. We describe the technique, demonstrate the measured performance
of the prototype instrument, and describe the prospects for applying the
technique to either a high-sensitivity standoff gamma-ray imaging detector or a
satellite- or balloon-borne gamma-ray astronomy telescope.Comment: submitted to Nuclear Instrument & Methods, special edition: SORMA
2010 on June 16, 201
NaGdF4:Eu3+ Nanoparticles for Enhanced X-ray Excited Optical Imaging.
X-ray luminescent nanoparticles (NPs), including lanthanide fluorides, have been evaluated for application to deep tissue in vivo molecular imaging using optical tomography. A combination of high material density, higher atomic number and efficient NIR luminescence from compatible lanthanide dopant ions indicates that particles that consist of ALnF4 (A = alkaline, Ln = lanthanide element) may offer a very attractive class of materials for high resolution, deep tissue imaging with X-ray excitation. NaGdF4:Eu3+ NPs produced an X-ray excited luminescence that was among the most efficient of nanomaterials that have been studied thus far. We have systematically studied factors such as (a) the crystal structure that changes the lattice environment of the doped Eu3+ ions within the unit cell; and extrinsic factors such as (b) a gold coating (with attendant biocompatibility) that couples to a plasmonic excitation, and (c) changes in the NPs surface properties via changes in the pH of the suspending medium-all with a significant impact on the X-ray excited luminescence of NaGdF4:Eu3+NPs. The luminescence from an optimally doped hexagonal phase NaGdF4:Eu3+ nanoparticle was 25% more intense compared to that of a cubic structure. We observed evidence of plasmonic reabsorption of midwavelength emission by a gold coating on hexagonal NaGdF4:Eu3+ NPs; fortunately, the NaGdF4:Eu3+ @Au core-shell NPs retained the efficient 5D0→7F4 NIR (692 nm) luminescence. The NaGdF4:Eu3+ NPs exhibited sensitivity to the ambient pH when excited by X-rays, an effect not seen with UV excitation. The sensitivity to the local environment can be understood in terms of the sensitivity of the excitons that are generated by the high energy X-rays (and not by UV photons) to crystal structure and to the surface state of the particles
Cultural Inheritance and Fertility Outcomes: An Analysis from Evolutionary and Interdisciplinary Perspectives
Taking evolutionary and interdisciplinary perspectives, this study views the reproductive result as an evolutionary outcome that may be affected by parental characteristics through cultural inheritance. We hypothesize that inheriting more cultural traits from parents leads to a greater resemblance between fertility outcomes of the offspring and their parents. In societies that experience a demographic transition, a greater resemblance can be indicated by a higher level of fertility of the offspring and a sooner transition from union formation to childbearing. We operationalize inheriting cultural traits from parents as reporting a religious affiliation the same as those of their parents. Through analyzing data from the National Survey of Family Growth (NSFG) Cycle 6, our results show that inheriting the same religious traits from parents does have an effect on one’s fertility. In particular, women who reported the same religious affiliations as those of their parents reported a greater number of children. They tend to have births inside, rather than outside, of marriage. Inside marriage, they are also more likely to give births sooner, rather than later. These findings support our hypotheses and help to build a theoretical framework that explains the changes in fertility outcomes from an interdisciplinary perspective
Genome-wide RNAi screen identifies broadly-acting host factors that inhibit arbovirus infection
Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA interference (RNAi) pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses. Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify cellular factors that restrict West Nile virus (WNV), a flavivirus with a broad and expanding geographical host range. Our genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses, dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts
Studying Kaon-pion S-wave scattering in K-matrix formalism
We generalize our previous work on \pi\pi scattering to K\pi scattering, and
re-analyze the experiment data of K\pi scattering below 1.6 GeV. Without any
free parameter, we explain K\pi I=3/2 S-wave phase shift very well by using
t-channel rho and u-channel K^* meson exchange. With the t-channel and
u-channel meson exchange fixed as the background term, we fit the K\pi I=1/2
S-wave data of the LASS experiment quite well by introducing one or two
s-channel resonances. It is found that there is only one s-channel resonance
between K\pi threshold and 1.6 GeV, i.e., K_0^*(1430) with a mass around
1438~1486 MeV and a width about 346 MeV, while the t-channel rho exchange gives
a pole at (450-480i) MeV for the amplitude.Comment: REVTeX4 file, 11 pages and 3 figure
A study of charged kappa in
Based on events collected by BESII, the decay
is studied. In the invariant mass
spectrum recoiling against the charged , the charged
particle is found as a low mass enhancement. If a Breit-Wigner function of
constant width is used to parameterize the kappa, its pole locates at MeV/. Also in this channel,
the decay is observed for the first time.
Its branching ratio is .Comment: 14 pages, 4 figure
Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence
We estimate the diffuse supernova neutrino background (DSNB) using the recent
progenitor-dependent, long-term supernova simulations from the Basel group and
including neutrino oscillations at several post-bounce times. Assuming
multi-angle matter suppression of collective effects during the accretion
phase, we find that oscillation effects are dominated by the matter-driven MSW
resonances, while neutrino-neutrino collective effects contribute at the 5-10%
level. The impact of the neutrino mass hierarchy, of the time-dependent
neutrino spectra and of the diverse progenitor star population is 10% or less,
small compared to the uncertainty of at least 25% of the normalization of the
supernova rate. Therefore, assuming that the sign of the neutrino mass
hierarchy will be determined within the next decade, the future detection of
the DSNB will deliver approximate information on the MSW-oscillated neutrino
spectra. With a reliable model for neutrino emission, its detection will be a
powerful instrument to provide complementary information on the star formation
rate and for learning about stellar physics.Comment: 19 pages, including 4 figures and 1 table. Clarifying paragraphs
added; results unchanged. Matches published version in JCA
Molecular regulation of alternative polyadenylation (APA) within the Drosophila nervous system
Alternative polyadenylation (APA) is a widespread gene regulatory mechanism that generates mRNAs with different 3′-ends, allowing them to interact with different sets of RNA regulators such as microRNAs and RNA-binding proteins. Recent studies have shown that during development, neural tissues produce mRNAs with particularly long 3′UTRs, suggesting that such extensions might be important for neural development and function. Despite this, the mechanisms underlying neural APA are not well understood. Here, we investigate this problem within the Drosophila nervous system, focusing on the roles played by general cleavage and polyadenylation factors (CPA factors). In particular, we examine the model that modulations in CPA factor concentration may affect APA during development. For this, we first analyse the expression of the Drosophila orthologues of all mammalian CPA factors and note that their expression decreases during embryogenesis. In contrast to this global developmental decrease in CPA factor expression, we see that cleavage factor I (CFI) expression is actually elevated in the late embryonic central nervous system, suggesting that CFI might play a special role in neural tissues. To test this, we use the UAS/Gal4 system to deplete CFI proteins from neural tissue and observe that in this condition, multiple genes switch their APA patterns, demonstrating a role of CFI in APA control during Drosophila neural development. Furthermore, analysis of genes with 3′UTR extensions of different length leads us to suggest a novel relation between 3′UTR length and sensitivity to CPA factor expression. Our work thus contributes to the understanding of the mechanisms of APA control within the developing central nervous system
Diffuse supernova neutrinos at underground laboratories
I review the physics of the Diffuse Supernova Neutrino flux (or Background,
DSNB), in the context of future searches at the next generation of neutrino
observatories. The theory of the DSNB is discussed in its fundamental elements,
namely the cosmological rate of supernovae, neutrino production inside a core
collapse supernova, redshift, and flavor oscillation effects. The current upper
limits are also reviewed, and results are shown for the rates and energy
distributions of the events expected at future liquid argon and liquid
scintillator detectors of O(10) kt mass, and water Cherenkov detectors up to a
0.5 Mt mass. Perspectives are given on the significance of future observations
of the DSNB, both at the discovery and precision phases, for the investigation
of the physics of supernovae and of the properties of the neutrino.Comment: latex, 94 pages. 35 figures and 13 tables. Version extensively
updated. Accepted in Astroparticle Physic
- …
