137 research outputs found

    Integrated genomic characterization of oesophageal carcinoma

    Get PDF
    Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies.ope

    Suppression of MMP-2 Attenuates TNF-α Induced NF-κB Activation and Leads to JNK Mediated Cell Death in Glioma

    Get PDF
    BACKGROUND: Abrogation of apoptosis for prolonged cell survival is essential in cancer progression. In our previous studies, we showed the MMP-2 downregulation induced apoptosis in cancer cell lines. Here, we attempt to investigate the exact molecular mechanism of how MMP-2 depletion leads to apoptosis in glioma xenograft cell lines. METHODOLOGY/PRINCIPAL FINDINGS: MMP-2 transcriptional suppression by MMP-2siRNA (pM) induces apoptosis associated with PARP, caspase-8 and -3 cleavage in human glioma xenograft cells 4910 and 5310. Western blotting and cytokine array showed significant decrease in the cellular and secreted levels of TNF-α with concomitant reduction in TNFR1, TRADD, TRAF2, RIP, IKKβ and pIκBα expression levels resulting in inhibition of p65 phosphorylation and nuclear translocation in pM-treated cells when compared to mock and pSV controls. In addition MMP-2 suppression led to elevated Fas-L, Fas and FADD expression levels along with increased p38 and JNK phosphorylation. The JNK-activity assay showed prolonged JNK activation in pM-transfected cells. Specific inhibition of p38 with SB203580 did not show any effect whereas inhibition of JNK phosphorylation with SP600125 notably reversed pM-induced cleavage of PARP, caspase-8 and -3, demonstrating a significant role of JNK in pM-induced cell death. Supplementation of rhMMP-2 counteracted the effect of pM by remarkably elevating TNF-α, TRADD, IKKβ and pIκBα expression and decreasing FADD, Fas-L, and phospho-JNK levels. The EMSA analysis indicated significant reversal of pM-inhibited NF-κB activity by rhMMP-2 treatment which rescued cells from pM-induced cell death. In vivo studies indicated that pM treatment diminished intracranial tumor growth and the immuno histochemical analysis showed decreased phospho-p65 and enhanced phospho-JNK levels that correlated with increased TUNEL-positive apoptotic cells in pM-treated tumor sections. CONCLUSION/SIGNIFICANCE: In summary, our study implies a role of MMP-2 in the regulation of TNF-α mediated constitutive NF-κB activation and Fas-mediated JNK mediated apoptosis in glioma xenograft cells in vitro and in vivo

    Novel computed tomographic chest metrics to detect pulmonary hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early diagnosis of pulmonary hypertension (PH) can potentially improve survival and quality of life. Detecting PH using echocardiography is often insensitive in subjects with lung fibrosis or hyperinflation. Right heart catheterization (RHC) for the diagnosis of PH adds risk and expense due to its invasive nature. Pre-defined measurements utilizing computed tomography (CT) of the chest may be an alternative non-invasive method of detecting PH.</p> <p>Methods</p> <p>This study retrospectively reviewed 101 acutely hospitalized inpatients with heterogeneous diagnoses, who consecutively underwent CT chest and RHC during the same admission. Two separate teams, each consisting of a radiologist and pulmonologist, blinded to clinical and RHC data, individually reviewed the chest CT's.</p> <p>Results</p> <p>Multiple regression analyses controlling for age, sex, ascending aortic diameter, body surface area, thoracic diameter and pulmonary wedge pressure showed that a main pulmonary artery (PA) diameter ≥29 mm (odds ratio (OR) = 4.8), right descending PA diameter ≥19 mm (OR = 7.0), true right descending PA diameter ≥ 16 mm (OR = 4.1), true left descending PA diameter ≥ 21 mm (OR = 15.5), right ventricular (RV) free wall ≥ 6 mm (OR = 30.5), RV wall/left ventricular (LV) wall ratio ≥0.32 (OR = 8.8), RV/LV lumen ratio ≥1.28 (OR = 28.8), main PA/ascending aorta ratio ≥0.84 (OR = 6.0) and main PA/descending aorta ratio ≥ 1.29 (OR = 5.7) were significant predictors of PH in this population of hospitalized patients.</p> <p>Conclusion</p> <p>This combination of easily measured CT-based metrics may, upon confirmatory studies, aid in the non-invasive detection of PH and hence in the determination of RHC candidacy in acutely hospitalized patients.</p

    MMP-9, uPAR and Cathepsin B Silencing Downregulate Integrins in Human Glioma Xenograft Cells In Vitro and In Vivo in Nude Mice

    Get PDF
    Involvement of MMP-9, uPAR and cathepsin B in adhesion, migration, invasion, proliferation, metastasis and tumor growth has been well established. In the present study, MMP-9, uPAR and cathepsin B genes were downregulated in glioma xenograft cells using shRNA plasmid constructs and we evaluated the involvement of integrins and changes in their adhesion, migration and invasive potential.MMP-9, uPAR and cathepsin B single shRNA plasmid constructs were used to downregulate these molecules in xenograft cells. We also used MMP-9/uPAR and MMP-9/cathepsin B bicistronic constructs to evaluate the cumulative effects. MMP-9, uPAR and cathepsin B downregulation significantly inhibits xenograft cell adhesion to several extracellular matrix proteins. Treatment with MMP-9, uPAR and cathepsin B shRNA of xenografts led to the downregulation of several alpha and beta integrins. In all the assays, we noticed more prominent effects with the bicistronic plasmid constructs when compared to the single plasmid shRNA constructs. FACS analysis demonstrated the expression of alphaVbeta3, alpha6beta1 and alpha9beta1 integrins in xenograft cells. Treatment with bicistronic constructs reduced alphaVbeta3, alpha6beta1 and alpha9beta1 integrin expressions in xenograft injected nude mice. Migration and invasion were also inhibited by MMP-9, uPAR and cathepsin B shRNA treatments as assessed by spheroid migration, wound healing, and Matrigel invasion assays. As expected, bicistronic constructs further inhibited the adhesion, migration and invasive potential of the xenograft cells as compared to individual treatments.Downregulation of MMP-9, uPAR and cathespin B alone and in combination inhibits adhesion, migration and invasive potential of glioma xenografts by downregulating integrins and associated signaling molecules. Considering the existence of integrin inhibitor-resistant cancer cells, our study provides a novel and effective approach to inhibiting integrins by downregulating MMP-9, uPAR and cathepsin B in the treatment of glioma

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    corecore