838 research outputs found

    The Extended Fock Basis of Clifford Algebra

    Full text link
    We investigate the properties of the Extended Fock Basis (EFB) of Clifford algebras introduced in [1]. We show that a Clifford algebra can be seen as a direct sum of multiple spinor subspaces that are characterized as being left eigenvectors of \Gamma. We also show that a simple spinor, expressed in Fock basis, can have a maximum number of non zero coordinates that equals the size of the maximal totally null plane (with the notable exception of vectorial spaces with 6 dimensions).Comment: Minimal corrections to the published versio

    Complex structures and the Elie Cartan approach to the theory of spinors

    Get PDF
    Each isometric complex structure on a 2\ell-dimensional euclidean space EE corresponds to an identification of the Clifford algebra of EE with the canonical anticommutation relation algebra for \ell ( fermionic) degrees of freedom. The simple spinors in the terminology of E.~Cartan or the pure spinors in the one of C. Chevalley are the associated vacua. The corresponding states are the Fock states (i.e. pure free states), therefore, none of the above terminologies is very good.Comment: 10

    On Spinors Transformations

    Full text link
    We begin showing that for even dimensional vector spaces VV all automorphisms of their Clifford algebras are inner. So all orthogonal transformations of VV are restrictions to VV of inner automorphisms of the algebra. Thus under orthogonal transformations PP and TT - space and time reversal - all algebra elements, including vectors vv and spinors φ\varphi, transform as vxvx1v \to x v x^{-1} and φxφx1\varphi \to x \varphi x^{-1} for some algebra element xx. We show that while under combined PTPT spinor φxφx1\varphi \to x \varphi x^{-1} remain in its spinor space, under PP or TT separately φ\varphi goes to a 'different' spinor space and may have opposite chirality. We conclude with a preliminary characterization of inner automorphisms with respect to their property to change, or not, spinor spaces.Comment: Minor changes to propositions 1 and

    Warped metrics for location-scale models

    Full text link
    This paper argues that a class of Riemannian metrics, called warped metrics, plays a fundamental role in statistical problems involving location-scale models. The paper reports three new results : i) the Rao-Fisher metric of any location-scale model is a warped metric, provided that this model satisfies a natural invariance condition, ii) the analytic expression of the sectional curvature of this metric, iii) the exact analytic solution of the geodesic equation of this metric. The paper applies these new results to several examples of interest, where it shows that warped metrics turn location-scale models into complete Riemannian manifolds of negative sectional curvature. This is a very suitable situation for developing algorithms which solve problems of classification and on-line estimation. Thus, by revealing the connection between warped metrics and location-scale models, the present paper paves the way to the introduction of new efficient statistical algorithms.Comment: preprint of a submission to GSI 2017 conferenc

    Free Differential Algebras: Their Use in Field Theory and Dual Formulation

    Get PDF
    The gauging of free differential algebras (FDA's) produces gauge field theories containing antisymmetric tensors. The FDA's extend the Cartan-Maurer equations of ordinary Lie algebras by incorporating p-form potentials (p>1p > 1). We study here the algebra of FDA transformations. To every p-form in the FDA we associate an extended Lie derivative \ell generating a corresponding ``gauge" transformation. The field theory based on the FDA is invariant under these new transformations. This gives geometrical meaning to the antisymmetric tensors. The algebra of Lie derivatives is shown to close and provides the dual formulation of FDA's.Comment: 10 pages, latex, no figures. Talk presented at the 4-th Colloquium on "Quantum Groups and Integrable Sysytems", Prague, June 199

    Serre Theorem for involutory Hopf algebras

    Full text link
    We call a monoidal category C{\mathcal C} a Serre category if for any CC, DCD \in {\mathcal C} such that C\ot D is semisimple, CC and DD are semisimple objects in C{\mathcal C}. Let HH be an involutory Hopf algebra, MM, NN two HH-(co)modules such that MNM \otimes N is (co)semisimple as a HH-(co)module. If NN (resp. MM) is a finitely generated projective kk-module with invertible Hattory-Stallings rank in kk then MM (resp. NN) is (co)semisimple as a HH-(co)module. In particular, the full subcategory of all finite dimensional modules, comodules or Yetter-Drinfel'd modules over HH the dimension of which is invertible in kk are Serre categories.Comment: a new version: 8 page

    Reconstructing the geometric structure of a Riemannian symmetric space from its Satake diagram

    Full text link
    The local geometry of a Riemannian symmetric space is described completely by the Riemannian metric and the Riemannian curvature tensor of the space. In the present article I describe how to compute these tensors for any Riemannian symmetric space from the Satake diagram, in a way that is suited for the use with computer algebra systems. As an example application, the totally geodesic submanifolds of the Riemannian symmetric space SU(3)/SO(3) are classified. The submission also contains an example implementation of the algorithms and formulas of the paper as a package for Maple 10, the technical documentation for this implementation, and a worksheet carrying out the computations for the space SU(3)/SO(3) used in the proof of Proposition 6.1 of the paper.Comment: 23 pages, also contains two Maple worksheets and technical documentatio

    The integrability of Lie-invariant geometric objects generated by ideals in the Grassmann algebra

    Full text link
    We investigate closed ideals in the Grassmann algebra serving as bases of Lie-invariant geometric objects studied before by E. Cartan. Especially, the E. Cartan theory is enlarged for Lax integrable nonlinear dynamical systems to be treated in the frame work of the Wahlquist Estabrook prolongation structures on jet-manifolds and Cartan-Ehresmann connection theory on fibered spaces. General structure of integrable one-forms augmenting the two-forms associated with a closed ideal in the Grassmann algebra is studied in great detail. An effective Maurer-Cartan one-forms construction is suggested that is very useful for applications. As an example of application the developed Lie-invariant geometric object theory for the Burgers nonlinear dynamical system is considered having given rise to finding an explicit form of the associated Lax type representation

    Dramatic post-cardiotomy outcome, due to severe anaphylactic reaction to protamine

    Get PDF
    Immunologic reactions to protamine sulfate during cardiac surgery are very rare. The frequency and outcome of such adverse reactions is unclear. We report a case of lethal anaphylactic reaction to protamine that occurred in a non-diabetic patient following the uneventful replacement of the ascending aorta. We also briefly review the mechanisms of this adverse reaction and emit some considerations on the management of this situatio

    Representations of hom-Lie algebras

    Full text link
    In this paper, we study representations of hom-Lie algebras. In particular, the adjoint representation and the trivial representation of hom-Lie algebras are studied in detail. Derivations, deformations, central extensions and derivation extensions of hom-Lie algebras are also studied as an application.Comment: 16 pages, multiplicative and regular hom-Lie algebras are used, Algebra and Representation Theory, 15 (6) (2012), 1081-109
    corecore