648 research outputs found

    A fundamental test for stellar feedback recipes in galaxy simulations

    Get PDF
    Direct comparisons between galaxy simulations and observations that both reach scales < 100 pc are strong tools to investigate the cloud-scale physics of star formation and feedback in nearby galaxies. Here we carry out such a comparison for hydrodynamical simulations of a Milky Way-like galaxy, including stochastic star formation, HII region and supernova feedback, and chemical post-processing at 8 pc resolution. Our simulation shows excellent agreement with almost all kpc-scale and larger observables, including total star formation rates, radial profiles of CO, HI, and star formation through the galactic disc, mass ratios of the ISM components, both whole-galaxy and resolved Kennicutt-Schmidt relations, and giant molecular cloud properties. However, we find that our simulation does not reproduce the observed de-correlation between tracers of gas and star formation on < 100 pc scales, known as the star formation 'uncertainty principle', which indicates that observed clouds undergo rapid evolutionary lifecycles. We conclude that the discrepancy is driven by insufficiently-strong pre-supernova feedback in our simulation, which does not disperse the surrounding gas completely, leaving star formation tracer emission too strongly associated with molecular gas tracer emission, inconsistent with observations. This result implies that the cloud-scale de-correlation of gas and star formation is a fundamental test for feedback prescriptions in galaxy simulations, one that can fail even in simulations that reproduce all other macroscopic properties of star-forming galaxies.Comment: 13 pages, 10 figures, accepted for publication in MNRA

    An uncertainty principle for star formation -- III. The characteristic emission time-scales of star formation rate tracers

    Get PDF
    We recently presented a new statistical method to constrain the physics of star formation and feedback on the cloud scale by reconstructing the underlying evolutionary timeline. However, by itself this new method only recovers the relative durations of different evolutionary phases. To enable observational applications, it therefore requires knowledge of an absolute 'reference time-scale' to convert relative time-scales into absolute values. The logical choice for this reference time-scale is the duration over which the star formation rate (SFR) tracer is visible because it can be characterised using stellar population synthesis (SPS) models. In this paper, we calibrate this reference time-scale using synthetic emission maps of several SFR tracers, generated by combining the output from a hydrodynamical disc galaxy simulation with the SPS model SLUG2. We apply our statistical method to obtain self-consistent measurements of each tracer's reference time-scale. These include Hα{\alpha} and 12 ultraviolet (UV) filters (from GALEX, Swift, and HST), which cover a wavelength range 150-350 nm. At solar metallicity, the measured reference time-scales of Hα{\alpha} are 4.320.23+0.09{4.32^{+0.09}_{-0.23}} Myr with continuum subtraction, and 6-16 Myr without, where the time-scale increases with filter width. For the UV filters we find 17-33 Myr, nearly monotonically increasing with wavelength. The characteristic time-scale decreases towards higher metallicities, as well as to lower star formation rate surface densities, owing to stellar initial mass function sampling effects. We provide fitting functions for the reference time-scale as a function of metallicity, filter width, or wavelength, to enable observational applications of our statistical method across a wide variety of galaxies.Comment: 24 pages, 18 figures, 7 tables (including Appendices); published in MNRA

    A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces: I. Cloud-scale Gas Motions

    Get PDF
    Modern extragalactic molecular gas surveys now reach the scales of star-forming giant molecular clouds (GMCs, 20-50 pc). Systematic variations in GMC properties with galaxy environment imply that clouds are not universally self-gravitating objects, decoupled from their surroundings. Here we reexamine the coupling of clouds to their environment and develop a model for 3D gas motions generated by forces arising with the galaxy gravitational potential defined by the background disk of stars and dark matter. We show that these motions can resemble or even exceed the motions needed to support gas against its own self-gravity throughout typical galaxy disks. The importance of the galactic potential in spiral arms and galaxy centers suggests that the response to self-gravity does not always dominate the motions of gas at GMC scales, with implications for observed gas kinematics, virial equilibrium and cloud morphology. We describe how a uniform treatment of gas motions in the plane and in the vertical direction synthesizes the two main mechanisms proposed to regulate star formation: vertical pressure equilibrium and shear/Coriolis forces as parameterized by Toomre Q~1. As the modeled motions are coherent and continually driven by the external potential, they represent support for the gas that is distinct from that conventionally attributed to turbulence, which decays rapidly and requires thus maintenance, e.g. via feedback from star formation. Thus our model suggests the galaxy itself can impose an important limit to star formation, as we explore in a second paper in this series.Comment: Accepted for publication in ApJ, 26 pages, 11 figure

    A milestone toward understanding PDR properties in the extreme environment of LMC-30Dor

    Full text link
    More complete knowledge of galaxy evolution requires understanding the process of star formation and interaction between the interstellar radiation field and the interstellar medium in galactic environments traversing a wide range of physical parameter space. Here we focus on the impact of massive star formation on the surrounding low metallicity ISM in 30 Doradus in the Large Magellanic Cloud. A low metal abundance, as is the case of some galaxies of the early universe, results in less ultra-violet shielding for the formation of the molecular gas necessary for star formation to proceed. The half-solar metallicity gas in this region is strongly irradiated by the super star cluster R136, making it an ideal laboratory to study the structure of the ISM in an extreme environment. Our spatially resolved study investigates the gas heating and cooling mechanisms, particularly in the photo-dissociation regions where the chemistry and thermal balance are regulated by far-ultraviolet photons (6 eV< h\nu <13.6 eV). We present Herschel observations of far-infrared fine-structure lines obtained with PACS and SPIRE/FTS. We have combined atomic fine-structure lines from Herschel and Spitzer observations with ground-based CO data to provide diagnostics on the properties and the structure of the gas by modeling it with the Meudon PDR code. We derive the spatial distribution of the radiation field, the pressure, the size, and the filling factor of the photodissociated gas and molecular clouds. We find a range of pressure of ~ 10^5 - 1.7x10^6 cm^{-3} K and a range of incident radiation field G_UV ~ 10^2 - 2.5x10^4 through PDR modeling. Assuming a plane-parallel geometry and a uniform medium, we find a total extinction of 1-3 mag , which correspond to a PDR cloud size of 0.2 to 3pc, with small CO depth scale of 0.06 to 0.5pc. We also determine the three dimensional structure of the gas. (Abridged)Comment: 20 pages, 23 figures, accepted in A&

    The Herschel Dwarf Galaxy Survey: I. Properties of the low-metallicity ISM from PACS spectroscopy

    Get PDF
    International audienceContext. The far-infrared (FIR) lines are important tracers of the cooling and physical conditions of the interstellar medium (ISM) and are rapidly becoming workhorse diagnostics for galaxies throughout the universe. There are clear indications of a different behavior of these lines at low metallicity that needs to be explored. Aims. Our goal is to explain the main differences and trends observed in the FIR line emission of dwarf galaxies compared to more metal-rich galaxies, and how this translates in ISM properties. Methods. We present Herschel/PACS spectroscopic observations of the [C ii] 157 μm, [O i] 63 and 145 μm, [O iii] 88 μm, [N ii] 122 and 205 μm, and [N iii] 57 μm fine-structure cooling lines in a sample of 48 low-metallicity star-forming galaxies of the guaranteed time key program Dwarf Galaxy Survey. We correlate PACS line ratios and line-to-LTIR ratios with LTIR, LTIR/LB, metallicity, and FIR color, and interpret the observed trends in terms of ISM conditions and phase filling factors with Cloudy radiative transfer models. Results. We find that the FIR lines together account for up to 3 percent of LTIR and that star-forming regions dominate the overall emission in dwarf galaxies. Compared to metal-rich galaxies, the ratios of [O iii]88/[N ii]122 and [N iii]57/[N ii]122 are high, indicative of hard radiation fields. In the photodissociation region (PDR), the [C ii]157/[O i]63 ratio is slightly higher than in metal-rich galaxies, with a small increase with metallicity, and the [O i]145/[O i]63 ratio is generally lower than 0.1, demonstrating that optical depth effects should be small on the scales probed. The [O iii]88/[O i]63 ratio can be used as an indicator of the ionized gas/PDR filling factor, and is found to be ~4 times higher in the dwarfs than in metal-rich galaxies. The high [C ii]/LTIR, [O i]/LTIR, and [O iii]/LTIR ratios, which decrease with increasing LTIR and LTIR/LB, are interpreted as a combination of moderate far-UV fields and a low PDR covering factor. Harboring compact phases of a low filling factor and a large volume filling factor of diffuse gas, the ISM of low-metallicity dwarf galaxies has a more porous structure than that of metal-rich galaxies
    corecore