59 research outputs found
Plant Genetic Bases Associated With Microbiota Descriptors Shed Light Into a Novel Holobiont Generalist Genes Theory
Plants as animals are associated with a cortege of microbes influencing their health, fitness and evolution. Scientists refer to all living organisms as holobionts, complex genetic units that coevolve simultaneously. This is what has been recently proposed as the hologenome theory. This exciting theory has important implications on animal and plant health; however, it still needs consistent proof to be validated. Indeed, holobionts are still poorly studied in their natural habitats where coevolution processes occur. Compared to animals, wild plant populations are an excellent model to explore the hologenome theory. These sessile holobionts have coevolved with their microbiota for decades, and natural selection and adaptive processes acting on wild plants are likely to regulate the plant-microbe interactions. Here, we conducted a microbiota survey, plant genome sequencing and genome-environmental analysis (GEA) of 26 natural populations of the plant species Brassica rapa. We collected plants over two seasons in Italy and France and analysed the root and rhizosphere microbiota. When conducting GEA, we evidenced neat peaks of association correlating with both fungal and bacterial microbiota. Surprisingly, we found 13 common genes between fungal and bacterial diversity descriptors that we referred to under the name of holobiont generalist genes (HGGs)
Combined cytogenetic and molecular methods for taxonomic verification and description of Brassica populations deriving from different origins
Agriculture faces great challenges to overcome global warming and improve system sustainability, requiring access
to novel genetic diversity. So far, wild populations and local landraces remain poorly explored. This is notably the case for
the two diploid species, Brassica oleracea L. (CC, 2n=2x=18) and B. rapa L. (AA, 2n=2x=20). In order to explore the
genetic diversity in both species, we have collected populations in their centre of origin, the Mediterranean basin, on a
large contrasting climatic and soil gradient from northern Europe to southern sub-Saharan regions. In these areas, we also
collected 14 populations belonging to five B. oleracea closely related species. Our objective was to ensure the absence of
species misidentification at the seedling stage among the populations collected and to describe thereafter their origins. We
combined flow cytometry, sequencing of a species-specific chloroplast genomic region, as well as cytogenetic analyses in
case of unexpected results for taxonomic verification. Out of the 112 B. oleracea and 154 B. rapa populations collected, 103
and 146, respectively, presented a good germination rate and eighteen populations were misidentified. The most frequent
mistake was the confusion of these diploid species with B. napus. Additionally for B. rapa, two autotetraploid populations
were observed. Habitats of the collected and confirmed wild populations and landraces are described in this study. The unique
plant material described here will serve to investigate the genomic regions involved in adaptation to climate and microbiota
within the framework of the H2020 Prima project ‘BrasExplor’
Positional Cloning of “Lisch-like”, a Candidate Modifier of Susceptibility to Type 2 Diabetes in Mice
In 404 Lepob/ob F2 progeny of a C57BL/6J (B6) x DBA/2J (DBA) intercross, we mapped a DBA-related quantitative trait locus (QTL) to distal Chr1 at 169.6 Mb, centered about D1Mit110, for diabetes-related phenotypes that included blood glucose, HbA1c, and pancreatic islet histology. The interval was refined to 1.8 Mb in a series of B6.DBA congenic/subcongenic lines also segregating for Lepob. The phenotypes of B6.DBA congenic mice include reduced β-cell replication rates accompanied by reduced β-cell mass, reduced insulin/glucose ratio in blood, reduced glucose tolerance, and persistent mild hypoinsulinemic hyperglycemia. Nucleotide sequence and expression analysis of 14 genes in this interval identified a predicted gene that we have designated “Lisch-like” (Ll) as the most likely candidate. The gene spans 62.7 kb on Chr1qH2.3, encoding a 10-exon, 646–amino acid polypeptide, homologous to Lsr on Chr7qB1 and to Ildr1 on Chr16qB3. The largest isoform of Ll is predicted to be a transmembrane molecule with an immunoglobulin-like extracellular domain and a serine/threonine-rich intracellular domain that contains a 14-3-3 binding domain. Morpholino knockdown of the zebrafish paralog of Ll resulted in a generalized delay in endodermal development in the gut region and dispersion of insulin-positive cells. Mice segregating for an ENU-induced null allele of Ll have phenotypes comparable to the B.D congenic lines. The human ortholog, C1orf32, is in the middle of a 30-Mb region of Chr1q23-25 that has been repeatedly associated with type 2 diabetes
Etudes cytologiques de choux tétraploïdes (Brassica oleracea L. ssp. acephala) obtenus à partir de lignées diploïdes après traitement à la colchicine
International audienc
Ribosomal RNA genes in diploid and amphidiploid <i>Brassica</i> and related species: organization, polymorphism, and evolution
Restriction maps for rRNA genes of the three cultivated diploid species Brassica nigra, B. oleracea, and B. campestris are described using the rDNA map of radish as a standard. rDNA subunit heterogeneity similar to that found in radish was observed in the Brassica species, thus resulting in complex hybridization patterns. Brassica campestris could be distinguished from the other two Brassica diploids by the absence of the EcoRI site E3 in the rDNA subunits in almost all the accessions tested, and by its smaller external intergenic spacer. Two radish probes covering specific regions of the rDNA subunit as well as two other heterologous probes permitted the assignment of specific fragments to coding and intergenic spacer regions. Amphidiploid species B. napus and B. juncea had rDNA profiles reflecting the combination of EcoRI fragments observed in their parental species. A series of alien addition lines disclosed rDNA regions on two chromosomes in the B. oleracea genome, distinguished by syntenic associations to other markers and by specific intergenic spacer fragment.Key words: rDNA, polyploidy, cole crops, Cruciferae, alien addition lines. </jats:p
Temperature and leaf wetness duration affect phenotypic expression of Rlm6-mediated resistance to Leptosphaeria maculans in Brassica napus
Near-isogenic Brassica napus lines carrying/lacking resistance gene Rlm6 were used to investigate the effects of temperature and leaf wetness duration on phenotypic expression of Rlm6-mediated resistance. Leaves were inoculated with ascospores or conidia of Leptosphaeria maculans carrying the effector gene AvrLm6. Incubation period to the onset of lesion development, number of lesions and lesion diameter were assessed. Symptomless growth of L. maculans from leaf lesions to stems was investigated using a green fluorescent protein (GFP) expressing isolate carrying AvrLm6. L. maculans produced large grey lesions on Darmor (lacking Rlm6) at 5-25 degrees C and DarmorMX (carrying Rlm6) at 25 degrees C, but small dark spots and 'green islands' on DarmorMX at 5-20 degrees C. With increasing temperature/wetness duration, numbers of lesions/spots generally increased. GFP-expressing L. maculans grew from leaf lesions down leaf petioles to stems on DarmorMX at 25 degrees C but not at 15 degrees C. We conclude that temperature and leaf wetness duration affect the phenotypic expression of Rlm6-mediated resistance in leaves and subsequent L. maculans spread down petioles to produce stem cankers
Temperature and leaf wetness duration affect phenotypic expression of Rlm6-mediated resistance to Leptosphaeria maculans in Brassica napus
Near-isogenic Brassica napus lines carrying/lacking resistance gene Rlm6 were used to investigate the effects of temperature and leaf wetness duration on phenotypic expression of Rlm6-mediated resistance. Leaves were inoculated with ascospores or conidia of Leptosphaeria maculans carrying the effector gene AvrLm6. Incubation period to the onset of lesion development, number of lesions and lesion diameter were assessed. Symptomless growth of L. maculans from leaf lesions to stems was investigated using a green fluorescent protein (GFP) expressing isolate carrying AvrLm6. L. maculans produced large grey lesions on Darmor (lacking Rlm6) at 5-25 degrees C and DarmorMX (carrying Rlm6) at 25 degrees C, but small dark spots and 'green islands' on DarmorMX at 5-20 degrees C. With increasing temperature/wetness duration, numbers of lesions/spots generally increased. GFP-expressing L. maculans grew from leaf lesions down leaf petioles to stems on DarmorMX at 25 degrees C but not at 15 degrees C. We conclude that temperature and leaf wetness duration affect the phenotypic expression of Rlm6-mediated resistance in leaves and subsequent L. maculans spread down petioles to produce stem cankers.Peer reviewe
139 Respiratory motion suppression for three-dimensional, high isotropic spatial resolution, magnetic resonance imaging of the lung without contrast agent injection
139 Respiratory motion suppression for three-dimensional, high isotropic spatial resolution, magnetic resonance imaging of the lung without contrast agent injection
Effects of temperature on Rlm6 -mediated resistance to Leptosphaeria maculans in Brassica napus
- …
