175 research outputs found
Recommended from our members
pi+p, pi+n, AND pi+d INTERACTIONS - A COMPILATION: PARTS I and II
Radiative corrections to all charge assignments of heavy quark baryon semileptonic decays
In semileptonic decays of spin-1/2 baryons containing heavy quarks up to six
charge assignments for the baryons and lepton are possible. We show that the
radiative corrections to four of these possibilities can be directly obtained
from the final results of the two possibilities previously studied. There is no
need to recalculate integrals over virtual or real photon momentum or any
traces.Comment: 15 pages, 2 figures, RevTex. Extended discussion. Final version to
appear in Physical Review
Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV II: photon-induced results
We present a nucleon resonance analysis by simultaneously considering all
pion- and photon-induced experimental data on the final states gamma N, pi N, 2
pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass
up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the
resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The
omega N production mechanism is dominated by large P_{11}(1710) and
P_{13}(1900) contributions. In this second part we present the results on the
photoproduction reactions and the electromagnetic properties of the resonances.
The inclusion of all important final states up to sqrt(s) = 2 GeV allows for
estimates on the importance of the individual states for the GDH sum rule.Comment: 41 pages, 26 figures, discussion extended, typos corrected,
references updated, to appear in Phys. Rev.
Neutron structure function and inclusive DIS from H-3 and He-3 at large Bjorken-x
A detailed study of inclusive deep inelastic scattering (DIS) from mirror A =
3 nuclei at large values of the Bjorken variable x is presented. The main
purpose is to estimate the theoretical uncertainties on the extraction of the
neutron DIS structure function from such nuclear measurements. On one hand,
within models in which no modification of the bound nucleon structure functions
is taken into account, we have investigated the possible uncertainties arising
from: i) charge symmetry breaking terms in the nucleon-nucleon interaction, ii)
finite Q**2 effects neglected in the Bjorken limit, iii) the role of different
prescriptions for the nucleon Spectral Function normalization providing baryon
number conservation, and iv) the differences between the virtual nucleon and
light cone formalisms. Although these effects have been not yet considered in
existing analyses, our conclusion is that all these effects cancel at the level
of ~ 1% for x < 0.75 in overall agreement with previous findings. On the other
hand we have considered several models in which the modification of the bound
nucleon structure functions is accounted for to describe the EMC effect in DIS
scattering from nuclei. It turns out that within these models the cancellation
of nuclear effects is expected to occur only at a level of ~ 3%, leading to an
accuracy of ~ 12 % in the extraction of the neutron to proton structure
function ratio at x ~ 0.7 -0.8$. Another consequence of considering a broad
range of models of the EMC effect is that the previously suggested iteration
procedure does not improve the accuracy of the extraction of the neutron to
proton structure function ratio.Comment: revised version to appear in Phys. Rev. C; main modifications in
Section 4; no change in the conclusion
Effective Lagrangian Approach to the Theory of Eta Photoproduction in the Region
We investigate eta photoproduction in the resonance region
within the effective Lagrangian approach (ELA), wherein leading contributions
to the amplitude at the tree level are taken into account. These include the
nucleon Born terms and the leading -channel vector meson exchanges as the
non-resonant pieces. In addition, we consider five resonance contributions in
the - and - channel; besides the dominant , these are:
and . The amplitudes for the
and the photoproduction near threshold have significant
differences, even as they share common contributions, such as those of the
nucleon Born terms. Among these differences, the contribution to the
photoproduction of the -channel excitation of the is the most
significant. We find the off-shell properties of the spin-3/2 resonances to be
important in determining the background contributions. Fitting our effective
amplitude to the available data base allows us to extract the quantity
, characteristic of the
photoexcitation of the resonance and its decay into the
-nucleon channel, of interest to precise tests of hadron models. At the
photon point, we determine it to be from
the old data base, and from a
combination of old data base and new Bates data. We obtain the helicity
amplitude for to be from the old data base, and from the combination of the old data base and new Bates
data, compared with the results of the analysis of pion photoproduction
yielding , in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in
Phys. Rev.
Clinical evaluation of two dark blood methods of late gadolinium quantification of ischemic scar
BACKGROUND: Late gadolinium enhancement (LGE) imaging was validated for diagnosis and quantification of myocardial infarction (MI). Despite good contrast between scar and normal myocardium, contrast between blood pool and myocardial scar can be limited. Dark blood LGE sequences attempt to overcome this issue. PURPOSE: To evaluate T1 rho (T1 ρ)-prepared dark blood sequence and compare to blood nulled (BN) phase sensitive inversion recovery (PSIR) and standard myocardium nulled (MN) PSIR for detection and quantification of scar. STUDY TYPE: Prospective. POPULATION: Thirty patients with prior MI. FIELD STRENGTH/SEQUENCE: Patients underwent identical 1.5 T MRI protocols. Following routine LGE imaging, a slice with scar, remote myocardium, and blood pool was selected. PSIR LGE was repeated with inversion time set to MN, to BN, and T1 ρ FIDDLE (flow-independent dark-blood delayed enhancement) in random order. ASSESSMENT: Three observers. Qualitative assessment of confidence scores in scar detection and degree of transmurality. Quantitative assessment of myocardial scar mass (grams), and contrast-to-noise ratio (CNR) measurements between scar, blood pool, and myocardium. STATISTICAL TESTS: Repeated-measures analysis of variance (ANOVA) with Bonferroni correction, coefficient of variation, and the Cohen κ statistic. RESULTS: CNRscar-blood was significantly increased for both BN (27.1 ± 10.4) and T1 ρ (30.2 ± 15.1) compared with MN (15.3 ± 8.4 P < 0.001 for both sequences). There was no significant difference in CNRscar-myo between BN (55.9 ± 17.3) and MN (51.1 ± 17.8 P = 0.512); both had significantly higher CNRscar-myo compared with the T1 ρ (42.6 ± 16.9 P = 0.007 and P = 0.014, respectively). No significant difference in scar size between LGE methods: MN (2.28 ± 1.58 g) BN (2.16 ± 1.57 g) and T1 ρ (2.29 ± 2.5 g). Confidence scores were significantly higher for BN (3.87 ± 0.346) compared with MN (3.1 ± 0.76 P < 0.001) and T1 ρ (3.20 ± 0.71 P < 0.001). DATA CONCLUSION: PSIR with inversion time (TI) set for blood nulling and the T1 ρ LGE sequence demonstrated significantly higher scar to blood CNR compared with routine MN. PSIR with TI set for blood nulling demonstrated significantly higher reader confidence scores compared with routine MN and T1 ρ LGE, suggesting routine adoption of a BN PSIR approach might be appropriate for LGE imaging. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018
ACTIV-2: A Platform Trial for the Evaluation of Novel Therapeutics for the Treatment of Early COVID-19 in Outpatients
In April of 2020, the public-private partnership, Accelerating COVID-19 Therapeutics and Vaccine (ACTIV), a cross National Institutes of Health (NIH) initiative, was created to jumpstart the evaluation of new therapeutics and vaccines for coronavirus disease 2019 (COVID-19) in randomized clinical trials. The process through which the ACTIV trials were developed and the rationale for the use of a master protocol for this purpose has been previously described. The ACTIV-2 trial was initiated to address the need to evaluate monoclonal antibodies and other novel therapies for ambulatory patients with COVID-19, and the AIDS Clinical Trials Group (ACTG) was selected by the NIH and the ACTIV Therapeutics Working Group to lead the protocol development and study conduct. The goal was to develop a platform trial that could rapidly evaluate compounds that were prioritized for study by the ACTIV agent prioritization group. The clinical trial was sponsored by the NIH and designed and led by a team of investigators in the ACTG with funding to the ACTG UM1 awards. The time from concept submission for ACTIV-2 to the first participant enrolled was 2.5 months. The study team worked in collaboration with pharmaceutical companies who were developing the products; however, all aspects of the trial were under the primary sponsorship of the NIH. A clinical research organization (CRO), PPD, was contracted by the NIH to support the ACTG in the implementation of the trial. This supplement includes papers that describe selected key findings and study design and analysis challenges. In this overview, we provide a description of the ACTIV-2 trial and highlight key operational challenges
Pooling Different Placebos as a Control Group in a Randomized Platform Trial: Benefits and Challenges From Experience in the ACTIV-2 COVID-19 Trial
Adaptive platform trials were implemented during the coronavirus disease 2019 (COVID-19) pandemic to rapidly evaluate therapeutics, including the placebo-controlled phase 2/3 ACTIV-2 trial, which studied 7 investigational agents with diverse routes of administration. For each agent, safety and efficacy outcomes were compared to a pooled placebo control group, which included participants who received a placebo for that agent or for other agents in concurrent evaluation. A 2-step randomization framework was implemented to facilitate this. Over the study duration, the pooled placebo design achieved a reduction in sample size of 6% versus a trial involving distinct placebo control groups for evaluating each agent. However, a 26% reduction was achieved during the period when multiple agents were in parallel phase 2 evaluation. We discuss some of the complexities implementing the pooled placebo design versus a design involving nonoverlapping control groups, with the aim of informing the design of future platform trials. Clinical Trials Registration. NCT04518410
Modeling the emergence of viral resistance for SARS-CoV-2 during treatment with an anti-spike monoclonal antibody
To mitigate the loss of lives during the COVID-19 pandemic, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with variants susceptible to mAb therapy. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response antiviral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection
Cardiac reverse remodeling in primary mitral regurgitation: mitral valve replacement vs. mitral valve repair
Background
When feasible, guidelines recommend mitral valve repair (MVr) over mitral valve replacement (MVR) to treat primary mitral regurgitation (MR), based upon historic outcome studies and transthoracic echocardiography (TTE) reverse remodeling studies. Cardiovascular magnetic resonance (CMR) offers reference standard biventricular assessment with superior MR quantification compared to TTE. Using serial CMR in primary MR patients, we aimed to investigate cardiac reverse remodeling and residual MR post-MVr vs MVR with chordal preservation.
Methods
83 patients with ≥ moderate-severe MR on TTE were prospectively recruited. 6-min walk tests (6MWT) and CMR imaging including cine imaging, aortic/pulmonary through-plane phase contrast imaging, T1 maps and late-gadolinium-enhanced (LGE) imaging were performed at baseline and 6 months after mitral surgery or watchful waiting (control group).
Results
72 patients completed follow-up (Controls = 20, MVr = 30 and MVR = 22). Surgical groups demonstrated comparable baseline cardiac indices and co-morbidities. At 6-months, MVr and MVR groups demonstrated comparable improvements in 6MWT distances (+ 57 ± 54 m vs + 64 ± 76 m respectively, p = 1), reduced indexed left ventricular end-diastolic volumes (LVEDVi; − 29 ± 21 ml/m2 vs − 37 ± 22 ml/m2 respectively, p = 0.584) and left atrial volumes (− 23 ± 30 ml/m2 and − 39 ± 26 ml/m2 respectively, p = 0.545). At 6-months, compared with controls, right ventricular ejection fraction was poorer post-MVr (47 ± 6.1% vs 53 ± 8.0% respectively, p = 0.01) compared to post-MVR (50 ± 5.7% vs 53 ± 8.0% respectively, p = 0.698). MVR resulted in lower residual MR-regurgitant fraction (RF) than MVr (12 ± 8.0% vs 21 ± 11% respectively, p = 0.022). Baseline and follow-up indices of diffuse and focal myocardial fibrosis (Native T1 relaxation times, extra-cellular volume and quantified LGE respectively) were comparable between groups. Stepwise multiple linear regression of indexed variables in the surgical groups demonstrated baseline indexed mitral regurgitant volume as the sole multivariate predictor of left ventricular (LV) end-diastolic reverse remodelling, baseline LVEDVi as the most significant independent multivariate predictor of follow-up LVEDVi, baseline indexed LV end-systolic volume as the sole multivariate predictor of follow-up LV ejection fraction and undergoing MVR (vs MVr) as the most significant (p < 0.001) baseline multivariate predictor of lower residual MR.
Conclusion
In primary MR, MVR with chordal preservation may offer comparable cardiac reverse remodeling and functional benefits at 6-months when compared to MVr. Larger, multicenter CMR studies are required, which if the findings are confirmed could impact future surgical practice
- …
