2,672 research outputs found

    Dehydrogenated polycyclic aromatic hydrocarbons and UV bump

    Full text link
    Recent calculations have shown that the UV bump at about 217.5 nm in the extinction curve can be explained by a complex mixture of PAHs in several charge states. Other studies proposed that the carriers are a restricted population made of neutral and singly-ionised dehydrogenated coronene molecules (C24Hn, n less than 3), in line with models of the hydrogenation state of interstellar PAHs predicting that medium-sized species are highly dehydrogenated. To assess the observational consequences of the latter hypothesis we have undertaken a systematic study of the electronic spectra of dehydrogenated PAHs. We use our first results to see whether such spectra show strong general trends upon dehydrogenation. We used state-of-the-art techniques in the framework of the density functional theory (DFT) to obtain the electronic ground-state geometries, and of the time- dependent DFT to evaluate the electronic excited-state properties. We computed the absorption cross-section of the species C24Hn (n=12,10,8,6,4,2,0) in their neutral and cationic charge-states. Similar calculations were performed for other PAHs and their fullydehydrogenated counterparts. pi electron energies are always found to be strongly affected by dehydrogenation. In all cases we examined, progressive dehydrogenation translates into a correspondingly progressive blue shift of the main electronic transitions. In particular, the pi-pi* collective resonance becomes broader and bluer with dehydrogenation. Its calculated energy position is therefore predicted to fall in the gap between the UV bump and the far-UV rise of the extinction curve. Since this effect appears to be systematic, it poses a tight observational limit on the column density of strongly dehydrogenated medium-sized PAHs.Comment: 5 pages, 7 figures, Astronomy & Astrophysics, in pres

    Titanium trisulfide monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility

    Get PDF
    A new two-dimensional (2D) layered material, namely, titanium trisulfide (TiS3_3) monolayer sheet, is predicted to possess desired electronic properties for nanoelectronic applications. On basis of the first-principles calculations within the framework of density functional theory and deformation theory, we show that the TiS3_3 2D crystal is a direct gap semiconductor with a band gap of 1.06 eV and high carrier mobility. More remarkably, the in-plane electron mobility of the 2D TiS3_3 is highly anisotropic, amounting to \sim10,000 cm2^2V1^{-1}s1^{-1} in the \emph{b} direction, which is higher than that of the MoS2_2 monolayer. Meanwhile, the hole mobility is about two orders of magnitude lower. We also find that bulk TiS3_3 possesses lower cleavage energy than graphite, indicating high possibility of exfoliation for TiS3_3 monolayers or multilayers. Both dynamical and thermal stability of the TiS3_3 monolayer is examined via phonon-spectrum calculation and Born-Oppenheimer molecular dynamics simulation in \emph{NPT} ensemble. The predicted novel electronic properties render the TiS3_3 monolayer an attractive 2D material for applications in future nanoelectronics.Comment: 4 figure

    Ohmic contacts to 2D semiconductors through van der Waals bonding

    Get PDF
    High contact resistances have blocked the progress of devices based on MX2 (M = Mo,W; X = S,Se,Te) 2D semiconductors. Interface states formed at MX2/metal contacts pin the Fermi level, leading to sizable Schottky barriers for p-type contacts in particular. We show that (i) one can remove the interface states by covering the metal by a 2D layer, which is van der Waals-bonded to the MX2 layer, and (ii) one can choose the buffer layer such, that it yields a p-type contact with a zero Schottky barrier height. We identify possible buffer layers such as graphene, a monolayer of h-BN, or an oxide layer with a high electron affinity, such as MoO3. The most elegant solution is a metallic M'X'2 layer with a high work function. A NbS2 monolayer adsorbed on a metal yields a high work function contact, irrespective of the metal, which gives a barrierless contact to all MX2 layers

    Synthesis of Alkaline Earth Diazenides MAEN2 (MAE = Ca, Sr, Ba) by Controlled Thermal Decomposition of Azides under High Pressure

    Get PDF
    The alkaline earth diazenides MAEN2 with MAE = Ca, Sr and Ba were synthesized by a novel synthetic approach, namely, a controlled decomposition of the corresponding azides in a multianvil press at highpressure/ high-temperature conditions. The crystal structure of hitherto unknown calcium diazenide (space group I4/mmm (no. 139), a = 3.5747(6) Å, c = 5.9844(9) Å, Z = 2, wRp = 0.078) was solved and refined on the basis of powder X-ray diffraction data as well as that of SrN2 and BaN2. Accordingly, CaN2 is isotypic with SrN2 (space group I4/mmm (no. 139), a = 3.8054(2) Å, c = 6.8961(4) Å, Z = 2, wRp = 0.057) and the corresponding alkaline earth acetylenides (MAEC2) crystallizing in a tetragonally distorted NaCl structure type. In accordance with literature data, BaN2 adopts a more distorted structure in space group C2/c (no. 15) with a = 7.1608(4) Å, b = 4.3776(3) Å, c = 7.2188(4) Å, β = 104.9679(33)°, Z = 4 and wRp = 0.049). The N−N bond lengths of 1.202(4) Å in CaN2 (SrN2 1.239(4) Å, BaN2 1.23(2) Å) correspond well with a double-bonded dinitrogen unit confirming a diazenide ion [N2]2−. Temperature-dependent in situ powder X-ray diffractometry of the three alkaline earth diazenides resulted in formation of the corresponding subnitrides MAE2N (MAE = Ca, Sr, Ba) at higher temperatures. FTIR spectroscopy revealed a band at about 1380 cm−1 assigned to the N−N stretching vibration of the diazenide unit. Electronic structure calculations support the metallic character of alkaline earth diazenides

    Orbital textures and charge density waves in transition metal dichalcogenides

    Full text link
    Low-dimensional electron systems, as realized naturally in graphene or created artificially at the interfaces of heterostructures, exhibit a variety of fascinating quantum phenomena with great prospects for future applications. Once electrons are confined to low dimensions, they also tend to spontaneously break the symmetry of the underlying nuclear lattice by forming so-called density waves; a state of matter that currently attracts enormous attention because of its relation to various unconventional electronic properties. In this study we reveal a remarkable and surprising feature of charge density waves (CDWs), namely their intimate relation to orbital order. For the prototypical material 1T-TaS2 we not only show that the CDW within the two-dimensional TaS2-layers involves previously unidentified orbital textures of great complexity. We also demonstrate that two metastable stackings of the orbitally ordered layers allow to manipulate salient features of the electronic structure. Indeed, these orbital effects enable to switch the properties of 1T-TaS2 nanostructures from metallic to semiconducting with technologically pertinent gaps of the order of 200 meV. This new type of orbitronics is especially relevant for the ongoing development of novel, miniaturized and ultra-fast devices based on layered transition metal dichalcogenides
    corecore