492 research outputs found

    General Approach for the Sensitivity Analysis and Optimization of Integrated Optical Evanescent-Wave Sensors

    Full text link
    The optimization of integrated optical evanescent-wave sensors is dual. For optimal performances, we require waveguides with both maximal sensitivity to the measurand, the quantity intended to be measured, and minimal sensitivities to perturbations. In this context, fully numerical approaches are extremely powerful, but demand huge computer resources. We address this issue by introducing a general and efficient approach, based on the formal derivation of analytical dispersion equations, to express and evaluate all waveguide sensitivities. In particular, we apply this approach to rectangular waveguides, to discuss its accuracy and its use within sensitivity optimization procedures

    Identification of a Novel Link between the Protein Kinase NDR1 and TGFβ Signaling in Epithelial Cells

    Get PDF
    Transforming growth factor-beta (TGFβ) is a secreted polypeptide that plays essential roles in cellular development and homeostasis. Although mechanisms of TGFβ-induced responses have been characterized, our understanding of TGFβ signaling remains incomplete. Here, we uncover a novel function for the protein kinase NDR1 (nuclear Dbf2-related 1) in TGFβ responses. Using an immunopurification approach, we find that NDR1 associates with SnoN, a key component of TGFβ signaling. Knockdown of NDR1 by RNA interference promotes the ability of TGFβ to induce transcription and cell cycle arrest in NMuMG mammary epithelial cells. Conversely, expression of NDR1 represses TGFβ-induced transcription and inhibits the ability of TGFβ to induce cell cycle arrest in NMuMG cells. Mechanistically, we find that NDR1 acts in a kinase-dependent manner to suppress the ability of TGFβ to induce the phosphorylation and consequent nuclear accumulation of Smad2, which is critical for TGFβ-induced transcription and responses. Strikingly, we also find that TGFβ reciprocally regulates NDR1, whereby TGFβ triggers the degradation of NDR1 protein. Collectively, our findings define a novel and intimate link between the protein kinase NDR1 and TGFβ signaling. NDR1 suppresses TGFβ-induced transcription and cell cycle arrest, and counteracting NDR1's negative regulation, TGFβ signaling induces the downregulation of NDR1 protein. These findings advance our understanding of TGFβ signaling, with important implications in development and tumorigenesis

    Reduced electric field in junctionless transistors

    Get PDF
    The electric field perpendicular to the current flow is found to be significantly lower in junctionless transistors than in regular inversion-mode or accumulation-mode field-effect transistors. Since inversion channel mobility in metal-oxide-semionductor transistors is reduced by this electric field, the low field in junctionless transistor may give them an advantage in terms of current drive for nanometer-scale complementary metal-oxide semiconductor applications. This observation still applies when quantum confinement is present. (C) 2010 American Institute of Physics. (doi:10.1063/1.3299014

    Ella Maillart : de l\u27exotisme au voyage intérieur

    Get PDF

    TRPC1 AS THE MISSING LINK BETWEEN THE BMP AND Ca2+ SIGNALLING PATHWAYS DURING NEURAL SPECIFICATION IN AMPHIBIANS

    Get PDF
    International audienceIn amphibians, the inhibition of bone morphogenetic protein (BMP) in the dorsal ectoderm has been proposed to be responsible for the first step of neural specification, called neural induction. We previously demonstrated that in Xenopus laevis embryos, the BMP signalling antagonist, noggin, triggers an influx of Ca 2+ through voltage-dependent L-type Ca 2+ channels (LTCCs), mainly via Ca V 1.2, and we showed that this influx constitutes a necessary and sufficient signal for triggering the expression of neural genes. However, the mechanism linking the inhibition of BMP signalling with the activation of LTCCs remained unknown. Here, we demonstrate that the transient receptor potential canonical subfamily member 1, (Trpc1), is an intermediate between BMP receptor type II (BMPRII) and the Ca V 1.2 channel. We show that noggin induces a physical interaction between BMPRII and Trpc1 channels

    Corneal dendritic cells in diabetes mellitus: A narrative review

    Get PDF
    Diabetes mellitus is a global public health problem with both macrovascular and microvascular complications, such as diabetic corneal neuropathy (DCN). Using in-vivo confocal microscopy, corneal nerve changes in DCN patients can be examined. Additionally, changes in the morphology and quantity of corneal dendritic cells (DCs) in diabetic corneas have also been observed. DCs are bone marrow-derived antigen-presenting cells that serve both immunological and non-immunological roles in human corneas. However, the role and pathogenesis of corneal DC in diabetic corneas have not been well understood. In this article, we provide a comprehensive review of both animal and clinical studies that report changes in DCs, including the DC density, maturation stages, as well as relationships between the corneal DCs, corneal nerves, and corneal epithelium, in diabetic corneas. We have also discussed the associations between the changes in corneal DCs and various clinical or imaging parameters, including age, corneal nerve status, and blood metabolic parameters. Such information would provide valuable insight into the development of diagnostic, preventive, and therapeutic strategies for DM-associated ocular surface complications

    Efficient Direct Nitrosylation of alpha-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release

    Get PDF
    The reaction of rhenium alpha-diimine (N-N) tricarbonyl complexes with nitrosonium tetrafluoroborate yields the corresponding dicarbonyl-nitrosyl [Re(CO)(2)(NO)(N-N)X](+) species (where X = halide). The complexes, accessible in a single step in good yield, are structurally nearly identical higher charge congeners of the tricarbonyl molecules. Substitution chemistry aimed at the realization of equivalent dicationic species (intended for applications as potential antimicrobial agents), revealed that the reactivity of metal ion in [Re(CO)(2)(NO)(N-N)X](+) is that of a hard Re acid, probably due to the stronger pi-acceptor properties of NO+ as compared to those of CO. The metal ion thus shows great affinity for pi-basic ligands, which are consequently difficult to replace by, e.g., sigma-donor or weak pi-acids like pyridine. Attempts of direct nitrosylation of alpha-diimine fac-[Re(CO)(3)](+) complexes bearing pi-basic OR-type ligands gave the [Re(CO)(2)(NO)(N-N)(BF4)][BF4] salt as the only product in good yield, featuring a stable Re-FBF3 bond. The solid state crystal structure of nearly all molecules presented could be elucidated. A fundamental consequence of the chemistry of [Re(CO)(2)(NO)(N-N)X](+) complexes, it that the same can be photo-activated towards CO release and represent an entirely new class of photoCORMs
    corecore