3,118 research outputs found

    Polyelectrolyte Adsorption on Charged Substrate

    Full text link
    The behavior of a polyelectrolyte adsorbed on a charged substrate of high-dielectric constant is studied by both Monte-Carlo simulation and analytical methods. It is found that in a low enough ionic strength medium, the adsorption transition is first-order where the substrate surface charge still keeps repulsive. The monomer density at the adsorbed surface is identified as the order parameter. It follows a linear relation with substrate surface charge density because of the electrostatic boundary condition at the charged surface. During the transition, the adsorption layer thickness remains finite. A new scaling law for the layer thickness is derived and verified by simulation.Comment: Proceedings of the 3rd Symposium on Slow Dynamics in Complex Systems, 3-8 November 2003, Sendai, Japa

    Boundary Condition of Polyelectrolyte Adsorption

    Full text link
    The modification of the boundary condition for polyelectrolyte adsorption on charged surface with short-ranged interaction is investigated under two regimes. For weakly charged Gaussian polymer in which the short-ranged attraction dominates, the boundary condition is the same as that of the neutral polymer adsorption. For highly charged polymer (compressed state) in which the electrostatic interaction dominates, the linear relationship (electrostatic boundary condition) between the surface monomer density and the surface charge density needs to be modified.Comment: 4 page

    Supersymmetric Mean-Field Theory of t-J Model

    Full text link
    The supersymmetric formulation of t-J model is studied in this paper at the mean-field level where δ\delta-T phase diagram is computed. We find that slave-fermion-like spiral phase is stable at low doping concentration, and the slave-boson-like d-wave fermionic spin pairing state becomes energetically favourable when δ\delta\geq 0.23. An improvement in free energy using Gutzwiller's method lowers the transition doping concentration to 0.06. We also point out the existence of new branches of excitations in the supersymmetric theory.Comment: 11 pages and 2 figure

    Trapped Resonant Fermions above Superfluid Transition Temperature

    Full text link
    We investigate trapped resonant fermions with unequal populations within the local density approximation above the superfluid transition temperature. By tuning the attractive interaction between fermions via Feshbach resonance, the system evolves from weakly interacting fermi gas to strongly interacting fermi gas, and finally becomes bose-fermi mixture. The density profiles of fermions are examined and compared with experiments. We also point out the simple relationships between the local density, the axial density, and the gas pressure within the local density approximation.Comment: 9 pages, 4 figure

    Modeling mutual feedback between users and recommender systems

    Get PDF
    Recommender systems daily influence our decisions on the Internet. While considerable attention has been given to issues such as recommendation accuracy and user privacy, the long-term mutual feedback between a recommender system and the decisions of its users has been neglected so far. We propose here a model of network evolution which allows us to study the complex dynamics induced by this feedback, including the hysteresis effect which is typical for systems with non-linear dynamics. Despite the popular belief that recommendation helps users to discover new things, we find that the long-term use of recommendation can contribute to the rise of extremely popular items and thus ultimately narrow the user choice. These results are supported by measurements of the time evolution of item popularity inequality in real systems. We show that this adverse effect of recommendation can be tamed by sacrificing part of short-term recommendation accuracy
    corecore