7,968 research outputs found

    Soft Methodology for Cost-and-error Sensitive Classification

    Full text link
    Many real-world data mining applications need varying cost for different types of classification errors and thus call for cost-sensitive classification algorithms. Existing algorithms for cost-sensitive classification are successful in terms of minimizing the cost, but can result in a high error rate as the trade-off. The high error rate holds back the practical use of those algorithms. In this paper, we propose a novel cost-sensitive classification methodology that takes both the cost and the error rate into account. The methodology, called soft cost-sensitive classification, is established from a multicriteria optimization problem of the cost and the error rate, and can be viewed as regularizing cost-sensitive classification with the error rate. The simple methodology allows immediate improvements of existing cost-sensitive classification algorithms. Experiments on the benchmark and the real-world data sets show that our proposed methodology indeed achieves lower test error rates and similar (sometimes lower) test costs than existing cost-sensitive classification algorithms. We also demonstrate that the methodology can be extended for considering the weighted error rate instead of the original error rate. This extension is useful for tackling unbalanced classification problems.Comment: A shorter version appeared in KDD '1

    Enzymatic Cross-Linking of Dynamic Thiol-Norbornene Click Hydrogels

    Get PDF
    Enzyme-mediated in situ forming hydrogels are attractive for many biomedical applications because gelation afforded by enzymatic reactions can be readily controlled not only by tuning macromer compositions, but also by adjusting enzyme kinetics. For example, horseradish peroxidase (HRP) has been used extensively for in situ cross-linking of macromers containing hydroxyl-phenol groups. The use of HRP to initiate thiol-allylether polymerization has also been reported, yet no prior study has demonstrated enzymatic initiation of thiol-norbornene gelation. In this study, we discovered that HRP can generate the thiyl radicals needed for initiating thiol-norbornene hydrogelation, which has only been demonstrated previously using photopolymerization. Enzymatic thiol-norbornene gelation not only overcomes light attenuation issue commonly observed in photopolymerized hydrogels, but also preserves modularity of the cross-linking. In particular, we prepared modular hydrogels from two sets of norbornene-modified macromers, 8-arm poly(ethylene glycol)-norbornene (PEG8NB) and gelatin-norbornene (GelNB). Bis-cysteine-containing peptides or PEG-tetra-thiol (PEG4SH) was used as a cross-linker for forming enzymatically and orthogonally polymerized hydrogel. For HRP-initiated PEG-peptide hydrogel cross-linking, gelation efficiency was significantly improved via adding tyrosine residues on the peptide cross-linkers. Interestingly, these additional tyrosine residues did not form permanent dityrosine cross-links following HRP-induced gelation. As a result, they remained available for tyrosinase-mediated secondary cross-linking, which dynamically increased hydrogel stiffness. In addition to material characterizations, we also found that both PEG- and gelatin-based hydrogels exhibited excellent cytocompatibility for dynamic 3D cell culture. The enzymatic thiol-norbornene gelation scheme presented here offers a new cross-linking mechanism for preparing modularly and dynamically cross-linked hydrogels

    Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine

    Get PDF
    Hydrogels immobilized with biomimetic peptides have been used widely for tissue engineering and drug delivery applications. Photopolymerization has been among the most commonly used techniques to fabricate peptide-immobilized hydrogels as it offers rapid and robust peptide immobilization within a crosslinked hydrogel network. Both chain-growth and step-growth photopolymerizations can be used to immobilize peptides within covalently crosslinked hydrogels. A previously developed visible light mediated step-growth thiol-norbornene gelation scheme has demonstrated efficient crosslinking of hydrogels composed of an inert poly(ethylene glycol)-norbornene (PEGNB) macromer and a small molecular weight bis-thiol linker, such as dithiothreitol (DTT). Compared with conventional visible light mediated chain-polymerizations where multiple initiator components are required, step-growth photopolymerized thiol-norbornene hydrogels are more cytocompatible for the in situ encapsulation of radical sensitive cells (e.g., pancreatic β-cells). This contribution explored visible light based crosslinking of various bis-cysteine containing peptides with macromer 8-arm PEGNB to form biomimetic hydrogels suitable for in situ cell encapsulation. It was found that the addition of soluble tyrosine during polymerization not only significantly accelerated gelation, but also improved the crosslinking efficiency of PEG-peptide hydrogels as evidenced by a decreased gel point and enhanced gel modulus. In addition, soluble tyrosine drastically enhanced the cytocompatibility of the resulting PEG-peptide hydrogels, as demonstrated by in situ encapsulation and culture of pancreatic MIN6 β-cells. This visible light based thiol-norbornene crosslinking mechanism provides an attractive gelation method for preparing cytocompatible PEG-peptide hydrogels for tissue engineering applications

    z ~ 4 Hα Emitters in the Great Observatories Origins Deep Survey: Tracing the Dominant Mode for Growth of Galaxies

    Get PDF
    We present evidence for strong Hα emission in galaxies with spectroscopic redshifts in the range of 3.8 10^(11) M_☉) galaxies at z ~ 3. This "strong Hα phase" of star formation plays a dominant role in galaxy growth at z ~ 4, and they are likely progenitors of massive red galaxies at lower redshifts

    Inhibitory Effects of Resveratrol on PDGF-BB-Induced Retinal Pigment Epithelial Cell Migration via PDGFRβ, PI3K/Akt and MAPK Pathways

    Get PDF
    Purpose: In diseases such as proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy, and age-related macular degeneration, retinal pigment epithelial (RPE) cells proliferate and migrate. Moreover, platelet-derived growth factor (PDGF) has been shown to enhance proliferation and migration of RPE cells in PVR. Even resveratrol can suppress the migration and adhesion of many cell types, its effects on RPE cell migration and adhesion remain unknown. In this study, we investigated the inhibitory effects of resveratrol on RPE cell migration induced by PDGF-BB, an isoform of PDGF, and adhesion to fibronectin, a major ECM component of PVR tissue. Methods: The migration of RPE cells was assessed by an electric cell-substrate impedance sensing migration assay and a Transwell migration assay. A cell viability assay was used to determine the viability of resveratrol treated-cells. The cell adhesion to fibronectin was examined by an adhesion assay. The interactions of resveratrol with PDGF-BB were analyzed by a dot binding assay. The PDGF-BB-induced signaling pathways were determined by western blotting and scratch wound healing assay. Results: Resveratrol inhibited PDGF-BB-induced RPE cell migration in a dose-dependent manner, but showed no effects on ARPE19 cell adhesion to fibronectin. The cell viability assay showed no cytotoxicity of resveratrol on RPE cells and the dot binding assay revealed no direct interactions of resveratrol with PDGF-BB. Inhibitory effects of resveratrol on PDGF-BB-induced platelet-derived growth factor receptor β (PDGFRβ) and tyrosine phosphorylation and the underlying pathways of PI3K/Akt, ERK and p38 activation were found; however, resveratrol and PDGF-BB showed no effects on PDGFRα and JNK activation. Scratch wound healing assay demonstrated resveratrol and the specific inhibitors of PDGFR, PI3K, MEK or p38 suppressed PDGF-BB-induced cell migration. Conclusions: These results indicate that resveratrol is an effective inhibitor of PDGF-BB-induced RPE cell migration via PDGFRβ, PI3K/Akt and MAPK pathways, but has no effects on the RPE cell adhesion to fibronectin

    Lutein Protects against Methotrexate-Induced and Reactive Oxygen Species-Mediated Apoptotic Cell Injury of IEC-6 Cells

    Get PDF
    Purpose High-dose chemotherapy using methotrexate (MTX) frequently induces side effects such as mucositis that leads to intestinal damage and diarrhea. Several natural compounds have been demonstrated of their effectiveness in protecting intestinal epithelial cells from these adverse effects. In this paper, we investigated the protection mechanism of lutein against MTX-induced damage in IEC-6 cells originating from the rat jejunum crypt. Methods: The cell viability, induced-apoptosis, reactive oxygen species (ROS) generation, and mitochondrial membrane potential in IEC-6 cells under MTX treatment were examined in the presence or absence of lutein. Expression level of Bcl2, Bad and ROS scavenging enzymes (including SOD, catalase and Prdx1) were detected by quantitative RT-PCR. Results: The cell viability of IEC-6 cells exposed to MTX was decreased in a dose- and time-dependent manner. MTX induces mitochondrial membrane potential loss, ROS generation and caspase 3 activation in IEC-6 cells. The cytotoxicity of MTX was reduced in IEC-6 cells by the 24 h pre-treatment of lutein. We found that pre-treatment of lutein significantly reduces MTX-induced ROS and apoptosis. The expression of SOD was up-regulated by the pre-treatment of lutein in the MTX-treated IEC-6 cells. These results indicated that lutein can protect IEC-6 cells from the chemo-drugs induced damage through increasing ROS scavenging ability. Conclusion: The MTX-induced apoptosis of IEC-6 cells was shown to be repressed by the pre-treatment of lutein, which may represent a promising adjunct to conventional chemotherapy for preventing intestinal damages

    Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells

    Get PDF
    The complex network of biochemical and biophysical cues in the pancreatic desmoplasia not only presents challenges to the fundamental understanding of tumor progression, but also hinders the development of therapeutic strategies against pancreatic cancer. Residing in the desmoplasia, pancreatic stellate cells (PSCs) are the major stromal cells affecting the growth and metastasis of pancreatic cancer cells by means of paracrine effects and extracellular matrix protein deposition. PSCs remain in a quiescent/dormant state until they are 'activated' by various environmental cues. While the mechanisms of PSC activation are increasingly being described in literature, the influence of matrix stiffness on PSC activation is largely unexplored. To test the hypothesis that matrix stiffness affects myofibroblastic activation of PSCs, we have prepared cell-laden hydrogels capable of being dynamically stiffened through an enzymatic reaction. The stiffening of the microenvironment was created by using a peptide linker with additional tyrosine residues, which were susceptible to tyrosinase-mediated crosslinking. Tyrosinase catalyzes the oxidation of tyrosine into dihydroxyphenylalanine (DOPA), DOPA quinone, and finally into DOPA dimer. The formation of DOPA dimer led to additional crosslinks and thus stiffening the cell-laden hydrogel. In addition to systematically studying the various parameters relevant to the enzymatic reaction and hydrogel stiffening, we also designed experiments to probe the influence of dynamic matrix stiffening on cell fate. Protease-sensitive peptides were used to crosslink hydrogels, whereas integrin-binding ligands (e.g., RGD motif) were immobilized in the network to afford cell-matrix interaction. PSC-laden hydrogels were placed in media containing tyrosinase for 6h to achieve in situ gel stiffening. We found that PSCs encapsulated and cultured in a stiffened matrix expressed higher levels of αSMA and hypoxia-inducible factor 1α (HIF-1α), suggestive of a myofibroblastic phenotype. This hydrogel platform offers a facile means of in situ stiffening of cell-laden matrices and should be valuable for probing cell fate process dictated by dynamic matrix stiffness. STATEMENT OF SIGNIFICANCE: Hydrogels with spatial-temporal controls over crosslinking kinetics (i.e., dynamic hydrogel) are increasingly being developed for studying mechanobiology in 3D. The general principle of designing dynamic hydrogel is to perform cell encapsulation within a hydrogel network that allows for postgelation modification in gel crosslinking density. The enzyme-mediated in situ gel stiffening is innovative because of the specificity and efficiency of enzymatic reaction. Although tyrosinase has been used for hydrogel crosslinking and in situ cell encapsulation, to the best of our knowledge tyrosinase-mediated DOPA formation has not been explored for in situ stiffening of cell-laden hydrogels. Furthermore, the current work provides a gradual matrix stiffening strategy that may more closely mimic the process of tumor development
    corecore