2,186 research outputs found

    Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells.

    Get PDF
    FUT1 and FUT2 encode alpha 1, 2-fucosyltransferases which catalyze the addition of alpha 1, 2-linked fucose to glycans. Glycan products of FUT1 and FUT2, such as Globo H and Lewis Y, are highly expressed on malignant tissues, including breast cancer. Herein, we investigated the roles of FUT1 and FUT2 in breast cancer. Silencing of FUT1 or FUT2 by shRNAs inhibited cell proliferation in vitro and tumorigenicity in mice. This was associated with diminished properties of cancer stem cell (CSC), including mammosphere formation and CSC marker both in vitro and in xenografts. Silencing of FUT2, but not FUT1, significantly changed the cuboidal morphology to dense clusters of small and round cells with reduced adhesion to polystyrene and extracellular matrix, including laminin, fibronectin and collagen. Silencing of FUT1 or FUT2 suppressed cell migration in wound healing assay, whereas FUT1 and FUT2 overexpression increased cell migration and invasion in vitro and metastasis of breast cancer in vivo. A decrease in mesenchymal like markers such as fibronectin, vimentin, and twist, along with increased epithelial like marker, E-cadherin, was observed upon FUT1/2 knockdown, while the opposite was noted by overexpression of FUT1 or FUT2. As expected, FUT1 or FUT2 knockdown reduced Globo H, whereas FUT1 or FUT2 overexpression showed contrary effects. Exogenous addition of Globo H-ceramide reversed the suppression of cell migration by FUT1 knockdown but not the inhibition of cell adhesion by FUT2 silencing, suggesting that at least part of the effects of FUT1/2 knockdown were mediated by Globo H. Our results imply that FUT1 and FUT2 play important roles in regulating growth, adhesion, migration and CSC properties of breast cancer, and may serve as therapeutic targets for breast cancer

    High-performance InSe Transistors with Ohmic Contact Enabled by Nonrectifying-barrier-type Indium Electrodes

    Full text link
    The electrical contact to two-dimensional (2D)-semiconductor materials are decisive to the electronic performance of 2D-semiconductor field-effect devices (FEDs). The presence of a Schottky barrier often leads to a large contact resistance, which seriously limits the channel conductance and carrier mobility measured in a two-terminal geometry. In contrast, ohmic contact is desirable and can be achieved by the presence of a nonrectifying or tunneling barrier. Here, we demonstrate that an nonrectifying barrier can be realized by contacting indium (In), a low work function metal, with layered InSe because of a favorable band alignment at the In-InSe interface. The nonrectifying barrier is manifested by ohmic contact behavior at T=2 K and a low barrier height, {\Phi}B_B=50 meV. This ohmic contact enables demonstration of an ON-current as large as 410 {\mu}A/{\mu}m, which is among the highest values achieved in FEDs based on layered semiconductors. A high electron mobility of 3,700 and 1,000 cm2^2/Vs is achieved with the two-terminal In-InSe FEDs at T=2 K and room temperature, respectively, which can be attributed to enhanced quality of both conduction channel and the contacts. The improvement in the contact quality is further proven by an X-ray photoelectron spectroscopy study, which suggests that a reduction effect occurs at the In-InSe interface. The demonstration of high-performance In-InSe FEDs indicates a viable interface engineering method for next-generation, 2D-semiconductor-based electronics

    Transcriptome profiling of the fifth-stage larvae of Angiostrongylus cantonensis by next-generation sequencing

    Get PDF
    Angiostrongylus cantonensis is an important zoonotic nematode. It is the causative agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans. However, information of this parasite at the genomic level is very limited. In the present study, the transcriptomic profiles of the fifth-stage larvae (L5) of A. cantonensis were investigated by next-generation sequencing (NGS). In the NGS database established from the larvae isolated from the brain of Sprague–Dawley rats, 31,487 unique genes with a mean length of 617 nucleotides were assembled. These genes were found to have a 46.08 % significant similarity to Caenorhabditis elegans by BLASTx. They were then compared with the expressed sequence tags of 18 other nematodes, and significant matches of 36.09–59.12 % were found. Among these genes, 3,338 were found to participate in 124 Kyoto Encyclopedia of Genes and Genomes pathways. These pathways included 1,514 metabolisms, 846 genetic information processing, 358 environmental information processing, 264 cellular processes, and 91 organismal systems. Analysis of 30,816 sequences with the gene ontology database indicated that their annotations included 5,656 biological processes (3,364 cellular processes, 3,061 developmental processes, and 3,191 multicellular organismal processes), 7,218 molecular functions (4,597 binding and 3,084 catalytic activities), and 4,719 cellular components (4,459 cell parts and 4,466 cells). Moreover, stress-related genes (112 heat stress and 33 oxidation stress) and genes for proteases (159) were not uncommon. This study is the first NGS-based study to set up a transcriptomic database of A. cantonensis L5. The results provide new insights into the survival, development, and host–parasite interactions of this blood-feeding nematode. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00436-013-3495-z) contains supplementary material, which is available to authorized users

    Discrete Frequency Selection of Frame-Based Stochastic Real-Time Tasks

    Full text link
    Energy-efficient real-time task scheduling has been actively explored in the past decade. Different from the past work, this paper considers schedulability conditions for stochastic real-time tasks. A schedulability condition is first presented for frame-based stochastic real-time tasks, and several algorithms are also examined to check the schedulability of a given strategy. An approach is then proposed based on the schedulability condition to adapt a continuous-speed-based method to a discrete-speed system. The approach is able to stay as close as possible to the continuous-speed-based method, but still guaranteeing the schedulability. It is shown by simulations that the energy saving can be more than 20% for some system configurationsComment: 10 page

    Experimental pulse technique for the study of microbial kinetics in continuous culture

    Get PDF
    A novel technique was developed for studying the growth kinetics of microorganisms in continuous culture. The method is based on following small perturbations of a chemostat culture by on-line measurement of the dynamic response in oxygen consumption rates. A mathematical model, incorporating microbial kinetics and mass transfer between gas and liquid phases, was applied to interpret the data. Facilitating the use of very small disturbances, the technique is non-disruptive as well as fast and accurate. The technique was used to study the growth kinetics of two cultures, Methylosinus trichosporium OB3b growing on methane, both in the presence and in the absence of copper, and Burkholderia (Pseudomonas) cepacia G4 growing on phenol. Using headspace flushes, gas blocks and liquid substrate pulse experiments, estimates for limiting substrate concentrations, maximum conversion rates Vmax and half saturation constants Ks could rapidly be obtained. For M. trichosporium OB3b it was found that it had a far higher affinity for methane when particulate methane monooxygenase (pMMO) was expressed than when the soluble form (sMMO) was expressed under copper limitation. While for B. cepacia G4 the oxygen consumption pattern during a phenol pulse in the chemostat indicated that phenol was transiently converted to an intermediate (4-hydroxy-2-oxovalerate), so that initially less oxygen was used per mole of phenol.

    Using Pattern Recognition for Investment Decision Support in Taiwan Stock Market

    Get PDF
    In Taiwan stock market, it has been accumulated large amounts of time series stock data and successful investment strategies. The stock price, which is impacted by various factors, is the result of buyer-seller investment strategies. Since the stock price reflects numerous factors, its pattern can be described as the strategies of investors. In this paper, pattern recognition concept is adapted to match the current stock price trend with the repeatedly appearing past price data. Accordingly, a new method is introduced in this research that extracting features quickly from stock time series chart to find out the most critical feature points. The matching can be processed via the corresponding information of the feature points. In other words, the goal is to seek for the historical repeatedly appearing patterns, namely the similar trend, offering the investors to make investment strategies

    Development and psychometric properties of self-efficacy of fall prevention measurement on hospitalized patients

    Get PDF
    This study was to develop a Self-efficacy of Fall Prevention Measurement (SEFPM) on hospitalized patients. The findings of psychometric test indicate SEFPM having a satisfied reliability and validity then this results serve as a reference for fall prevention on hospital based environment
    corecore