1,233 research outputs found

    SIM-DSP: A DSP-Enhanced CAD Platform for Signal Integrity Macromodeling and Simulation

    Get PDF
    Macromodeling-Simulation process for signal integrity verifications has become necessary for the high speed circuit system design. This paper aims to introduce a “VLSI Signal Integrity Macromodeling and Simulation via Digital Signal Processing Techniques” framework (known as SIM-DSP framework), which applies digital signal processing techniques to facilitate the SI verification process in the pre-layout design phase. Core identification modules and peripheral (pre-/post-)processing modules have been developed and assembled to form a verification flow. In particular, a single-step discrete cosine transform truncation (DCTT) module has been developed for modeling-simulation process. In DCTT, the response modeling problem is classified as a signal compression problem, wherein the system response can be represented by a truncated set of non-pole based DCT bases, and error can be analyzed through Parseval’s theorem. Practical examples are given to show the applicability of our proposed framework

    Exploiting implicit information from data for linear macromodeling

    Get PDF
    In macromodeling, data points of sampled structure responses are always matched to construct linear macromodels for transient simulations of packaging structures. However, implicit information from sampled data has not been exploited comprehensively to facilitate the identification process. In this paper, we exploit implicit information from the sampled data for linear marcomodeling. First, in order to include complementary data for a more informative identification, we propose a discrete-time domain identification framework for frequency-/time-/hybrid-domain macromodeling. Second, we introduce pre-/post-processing techniques (e.g., P-norm identification criterion and warped frequency-/hybrid-domain identification) to interpret implicit information for configurations of identifications. Various examples from chip-level to board-level are used to demonstrate the performance of the proposed framework. © 2013 IEEE.published_or_final_versio

    CPU-GPU hybrid parallel binomial American option pricing

    Get PDF
    We present in this paper a novel parallel binomial algorithm that computes the price of an American option. The algorithm partitions a binomial tree constructed for the pricing into blocks of multiple levels of nodes, and assigns each such block to multiple processors. Each of the processors then computes the option's values at its assigned nodes in two phases. The algorithm is implemented and tested on a heterogeneous system consisting of an Intel multi-core processor and a NVIDIA GPU. The whole task is split and divided over and the CPU and GPU so that the computations are performed on the two processors simultaneously. In the hybrid processing, the GPU is always assigned the last part of a block, and makes use of a couple of buffers in the on-chip shared memory to reduce the number of accesses to the off-chip device memory. The performance of the hybrid processing is compared with an optimised CPU serial code, a CPU parallel implementation and a GPU standalone program.published_or_final_versio

    A concurrent error detection based fault-tolerant 32 nm XOR-XNOR circuit implementation

    Get PDF
    As modern processors and semiconductor circuits move into 32 nm technologies and below, designers face the major problem of process variations. This problem makes designing VLSI circuits harder and harder, affects the circuit performance and introduces faults that can cause critical failures. Therefore, fault-tolerant design is required to obtain the necessary level of reliability and availability especially for safety-critical systems. Since XOR-XNOR circuits are basic building blocks in various digital and mixed systems, especially in arithmetic circuits, these gates should be designed such that they indicate any malfunction during normal operation. In fact, this property of verifying the results delivered by a circuit during its normal operation is called Concurrent Error Detection (CED). In this paper, we propose a CED based fault- tolerant XOR-XNOR circuit implementation. The proposed design is performed using the 32 nm process technology.published_or_final_versio

    Using web 2.0 tools to enhance learning in higher education: A case study in technological education

    Get PDF
    Pedagogy with Web 2.0 technologies is shown to facilitate the teaching-learning process through content sharing and idea collaboration. In this paper, we explore the possibility of using social networking tools, to support teaching practice in technological courses. In our study, we utilized i) Facebook Page as a platform to share content, experiences and news of a general engineering course, and ii) blog as a collaborative writing tool to express thoughts and opinions in a common core (general education) course. After our one-semester (three- months) study, we found that Facebook Page is an easy-to- use and familiar tool for students to share and exchange ideas among classmates, peers and public.published_or_final_versio

    The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms

    Get PDF
    Abstract Background Neuroblastoma is a relatively common and highly belligerent childhood tumor with poor prognosis by current therapeutic approaches. A novel anti-cancer agent of the di-2-pyridylketone thiosemicarbazone series, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), demonstrates promising anti-tumor activity. Recently, a second-generation analogue, namely di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), has entered multi-center clinical trials for the treatment of advanced and resistant tumors. The current aim was to examine if these novel agents were effective against aggressive neuroblastoma in vitro and in vivo and to assess their mechanism of action. Methods Neuroblastoma cancer cells as well as immortalized normal cells were used to assess the efficacy and selectivity of DpC in vitro. An orthotopic SK-N-LP/Luciferase xenograft model was used in nude mice to assess the efficacy of DpC in vivo. Apoptosis in tumors was confirmed by Annexin V/PI flow cytometry and H&E staining. Results DpC demonstrated more potent cytotoxicity than Dp44mT against neuroblastoma cells in a dose- and time-dependent manner. DpC significantly increased levels of phosphorylated JNK, neuroglobin, cytoglobin, and cleaved caspase 3 and 9, while decreasing IkBα levels in vitro. The contribution of JNK, NF-ĸB, and caspase signaling/activity to the anti-tumor activity of DpC was verified by selective inhibitors of these pathways. After 3 weeks of treatment, tumor growth in mice was significantly (p < 0.05) reduced by DpC (4 mg/kg/day) given intravenously and the agent was well tolerated. Xenograft tissues showed significantly higher expression of neuroglobin, cytoglobin, caspase 3, and tumor necrosis factor-α (TNFα) levels and a slight decrease in interleukin-10 (IL-10). Conclusions DpC was found to be highly potent against neuroblastoma, demonstrating its potential as a novel therapeutic for this disease. The ability of DpC to increase TNFα in tumors could also promote the endogenous immune response to mediate enhanced cancer cell apoptosis

    Design and realization of a smart battery management system

    Get PDF
    Battery management system (BMS) emerges a decisive system component in battery-powered applications, such as (hybrid) electric vehicles and portable devices. However, due to the inaccurate parameter estimation of aged battery cells and multi-cell batteries, current BMSs cannot control batteries optimally, and therefore affect the usability of products. In this paper, we proposed a smart management system for multi-cell batteries, and discussed the development of our research study in three directions: i) improving the effectiveness of battery monitoring and current sensing, ii) modeling the battery aging process, and iii) designing a self-healing circuit system to compensate performance variations due to aging and other variations.published_or_final_versio

    Developing Student’s Global Competencies at Scale in an Affordable MOOC K12 Outreach Initiative

    Get PDF

    Identification of a novel distal regulatory element of the human Neuroglobin gene by the chromosome conformation capture approach

    Get PDF
    Neuroglobin (NGB) is predominantly expressed in the brain and retina. Studies suggest that NGB exerts protective effects to neuronal cells and is implicated in reducing the severity of stroke and Alzheimer's disease. However, little is known about the mechanisms which regulate the cell type-specific expression of the gene. In this study, we hypothesized that distal regulatory elements (DREs) are involved in optimal expression of the NGB gene. By chromosome conformation capture we identified two novel DREs located -70 kb upstream and +100 kb downstream from the NGB gene. ENCODE database showed the presence of DNaseI hypersensitive and transcription factors binding sites in these regions. Further analyses using luciferase reporters and chromatin immunoprecipitation suggested that the -70 kb region upstream of the NGB gene contained a neuronalspecific enhancer and GATA transcription factor binding sites. Knockdown of GATA-2 caused NGB expression to drop dramatically, indicating GATA-2 as an essential transcription factor for the activation of NGB expression. The crucial role of the DRE in NGB expression activation was further confirmed by the drop in NGB level after CRISPR-mediated deletion of the DRE. Taken together, we show that the NGB gene is regulated by a cell type-specific loop formed between its promoter and the novel DRE
    corecore