1,734 research outputs found
Atmospheric teleconnection mechanisms of extratropical North Atlantic SST influence on Sahel rainfall
Extratropical North Atlantic cooling has been tied to droughts over the Sahel in both paleoclimate observations and modeling studies. This study, which uses an atmospheric general circulation model (GCM) coupled to a slab ocean model that simulates this connection, explores the hypothesis that the extratropical North Atlantic cooling causes the Sahel droughts via an atmospheric teleconnection mediated by tropospheric cooling. The drying is also produced in a regional climate model simulation of the Sahel when reductions in air temperature (and associated geopotential height and humidity changes) from the GCM simulation are imposed as the lateral boundary conditions. This latter simulation explicitly demonstrates the central role of tropospheric cooling in mediating the atmospheric teleconnection from extratropical North Atlantic cooling. Diagnostic analyses are applied to the GCM simulation to infer teleconnection mechanisms. An analysis of top of atmosphere radiative flux changes diagnosed with a radiative kernel technique shows that extratropical North Atlantic cooling is augmented by a positive low cloud feedback and advected downstream, cooling Europe and North Africa. The cooling over North Africa is further amplified by a reduced greenhouse effect from decreased atmospheric specific humidity. A moisture budget analysis shows that the direct moisture effect and monsoon weakening, both tied to the ambient cooling and resulting circulation changes, and feedbacks by vertical circulation and evaporation augment the rainfall reduction. Cooling over the Tropical North Atlantic in response to the prescribed extratropical cooling also augments the Sahel drying. Taken together, they suggest a thermodynamic pathway for the teleconnection. The teleconnection may also be applicable to understanding the North Atlantic influence on Sahel rainfall over the twentieth century
Associations between IL12B polymorphisms and tuberculosis in the Hong Kong Chinese population
Background. Interleukin (IL)-12 plays a vital role in regulating cell-mediated immunity against tuberculosis (TB). Methods. To test whether IL12B genetic polymorphisms might contribute to human TB susceptibility, we examined the genotype frequencies of 5 IL12B polymorphisms (at promoter, intron 2, intron 4, exon 5, and 3′ untranslated region [UTR]) in 516 patients with TB and 514 healthy control subjects from the Hong Kong Chinese population. Results. Individuals homozygous for the IL12B intron 2-repeat marker (ATT) 8 had a 2.1-fold increased risk of developing TB (P < .001) (odds ratio, 2.14 [95% confidence interval, 1.45-3.19]). Estimation of the frequencies of multiple-locus haplotypes composed of IL12B promoter, intron 2, intron 4, and 3′ UTR alleles revealed potential risk haplotypes (designated "A" and "K") and protective haplotypes (designated "B") for TB. Furthermore, combining the genotype data of the 4 informative IL12B loci revealed a strong association between a specific genotype pattern, termed "diplotype I" (heterozygous A and K haplotypes), and TB. In contrast, diplotype II (homozygous BB haplotypes) appeared protective against TB. Conclusions. These findings support the association between IL12B intron 2 polymorphism and TB and between specific IL12B haplotypes and TB.published_or_final_versio
Reflected Light from Sand Grains in the Terrestrial Zone of a Protoplanetary Disk
We show that grains have grown to ~mm size (sand sized) or larger in the
terrestrial zone (within ~3 AU) of the protoplanetary disk surrounding the 3
Myr old binary star KH 15D. We also argue that the reflected light in the
system reaches us by back scattering off the far side of the same ring whose
near side causes the obscuration.Comment: 22 pages, 5 figures. To be published in Nature, March 13, 2008.
Contains a Supplemen
Quantum machine learning: a classical perspective
Recently, increased computational power and data availability, as well as
algorithmic advances, have led machine learning techniques to impressive
results in regression, classification, data-generation and reinforcement
learning tasks. Despite these successes, the proximity to the physical limits
of chip fabrication alongside the increasing size of datasets are motivating a
growing number of researchers to explore the possibility of harnessing the
power of quantum computation to speed-up classical machine learning algorithms.
Here we review the literature in quantum machine learning and discuss
perspectives for a mixed readership of classical machine learning and quantum
computation experts. Particular emphasis will be placed on clarifying the
limitations of quantum algorithms, how they compare with their best classical
counterparts and why quantum resources are expected to provide advantages for
learning problems. Learning in the presence of noise and certain
computationally hard problems in machine learning are identified as promising
directions for the field. Practical questions, like how to upload classical
data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde
A brief group intervention using a cognitive-behavioural approach to reduce postnatal depressive symptoms: a randomised controlled trial
Key Messages: 1. Postnatal women preferred psychotherapy to pharmacotherapy for reduction of postnatal depression. ; 2. A brief, cognitive-behavioural, group intervention with 6 weekly sessions significantly reduced depressive symptoms and was well received by postnatal women. ; 3. This brief group intervention could be further tested as an integral part of postnatal care to complement existing services and reduce waiting time
On the Gas Content, Star Formation Efficiency, and Environmental Quenching of Massive Galaxies in Protoclusters at z ≈ 2.0–2.5
We present ALMA Band 6 (ν = 233 GHz, λ = 1.3 mm) continuum observations toward 68 "normal" star-forming galaxies within two Coma-like progenitor structures at z = 2.10 and 2.47, from which ISM masses are derived, providing the largest census of molecular gas mass in overdense environments at these redshifts. Our sample comprises galaxies with a stellar mass range of 1 × 10⁹ M_⊙–4 × 10¹¹ M_⊙ with a mean M_★ ≈ 6 × 10¹⁰ M_⊙. Combining these measurements with multiwavelength observations and spectral energy distribution modeling, we characterize the gas mass fraction and the star formation efficiency, and infer the impact of the environment on galaxies' evolution. Most of our detected galaxies (≳70%) have star formation efficiencies and gas fractions similar to those found for coeval field galaxies and in agreement with the field scaling relations. However, we do find that the protoclusters contain an increased fraction of massive, gas-poor galaxies, with low gas fractions (f_(gas) ≾ 6%–10%) and red rest-frame ultraviolet/optical colors typical of post-starburst and passive galaxies. The relatively high abundance of passive galaxies suggests an accelerated evolution of massive galaxies in protocluster environments. The large fraction of quenched galaxies in these overdense structures also implies that environmental quenching takes place during the early phases of cluster assembly, even before virialization. From our data, we derive a quenching efficiency of ϵ_q ≈ 0.45 and an upper limit on the quenching timescale of τ_q < 1 Gyr
Gender-dependent differences in plasma matrix metalloproteinase-8 elevated in pulmonary tuberculosis.
Tuberculosis (TB) remains a global health pandemic and greater understanding of underlying pathogenesis is required to develop novel therapeutic and diagnostic approaches. Matrix metalloproteinases (MMPs) are emerging as key effectors of tissue destruction in TB but have not been comprehensively studied in plasma, nor have gender differences been investigated. We measured the plasma concentrations of MMPs in a carefully characterised, prospectively recruited clinical cohort of 380 individuals. The collagenases, MMP-1 and MMP-8, were elevated in plasma of patients with pulmonary TB relative to healthy controls, and MMP-7 (matrilysin) and MMP-9 (gelatinase B) were also increased. MMP-8 was TB-specific (p<0.001), not being elevated in symptomatic controls (symptoms suspicious of TB but active disease excluded). Plasma MMP-8 concentrations inversely correlated with body mass index. Plasma MMP-8 concentration was 1.51-fold higher in males than females with TB (p<0.05) and this difference was not due to greater disease severity in men. Gender-specific analysis of MMPs demonstrated consistent increase in MMP-1 and -8 in TB, but MMP-8 was a better discriminator for TB in men. Plasma collagenases are elevated in pulmonary TB and differ between men and women. Gender must be considered in investigation of TB immunopathology and development of novel diagnostic markers
Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution
It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing
GLAST: Understanding the High Energy Gamma-Ray Sky
We discuss the ability of the GLAST Large Area Telescope (LAT) to identify,
resolve, and study the high energy gamma-ray sky. Compared to previous
instruments the telescope will have greatly improved sensitivity and ability to
localize gamma-ray point sources. The ability to resolve the location and
identity of EGRET unidentified sources is described. We summarize the current
knowledge of the high energy gamma-ray sky and discuss the astrophysics of
known and some prospective classes of gamma-ray emitters. In addition, we also
describe the potential of GLAST to resolve old puzzles and to discover new
classes of sources.Comment: To appear in Cosmic Gamma Ray Sources, Kluwer ASSL Series, Edited by
K.S. Cheng and G.E. Romer
Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.
The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation
- …
