1,313 research outputs found
M. Chiani, D. Dardari, and M. K. Simon, “New exponential bounds and approximations for the computation of error probability in fading channels,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 840 – 845, Jul. 2003.
On the probability that all eigenvalues of Gaussian, Wishart, and double Wishart random matrices lie within an interval
We derive the probability that all eigenvalues of a random matrix lie
within an arbitrary interval ,
, when is a real or complex finite dimensional Wishart,
double Wishart, or Gaussian symmetric/Hermitian matrix. We give efficient
recursive formulas allowing the exact evaluation of for Wishart
matrices, even with large number of variates and degrees of freedom. We also
prove that the probability that all eigenvalues are within the limiting
spectral support (given by the Mar{\v{c}}enko-Pastur or the semicircle laws)
tends for large dimensions to the universal values and for
the real and complex cases, respectively. Applications include improved bounds
for the probability that a Gaussian measurement matrix has a given restricted
isometry constant in compressed sensing.Comment: IEEE Transactions on Information Theory, 201
M. Chiani “Introducing erasures in decision-feedback equalization to reduce error propagation,” IEEE Trans. Commun., vol. 45, no. 7, pp. 757–760, Jul. 1997.
Distribution of the largest root of a matrix for Roy's test in multivariate analysis of variance
Let denote two independent real Gaussian and matrices with , each constituted by zero mean i.i.d. columns with
common covariance. The Roy's largest root criterion, used in multivariate
analysis of variance (MANOVA), is based on the statistic of the largest
eigenvalue, , of , where
and are independent central Wishart matrices. We derive a new
expression and efficient recursive formulas for the exact distribution of
. The expression can be easily calculated even for large parameters,
eliminating the need of pre-calculated tables for the application of the Roy's
test
M. Chiani, D. Dardari, and M. K. Simon, “New exponential bounds and approximations for the computation of error probability in fading channels,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 840 – 845, Jul. 2003.
High-Throughput Random Access via Codes on Graphs
Recently, contention resolution diversity slotted ALOHA (CRDSA) has been
introduced as a simple but effective improvement to slotted ALOHA. It relies on
MAC burst repetitions and on interference cancellation to increase the
normalized throughput of a classic slotted ALOHA access scheme. CRDSA allows
achieving a larger throughput than slotted ALOHA, at the price of an increased
average transmitted power. A way to trade-off the increment of the average
transmitted power and the improvement of the throughput is presented in this
paper. Specifically, it is proposed to divide each MAC burst in k sub-bursts,
and to encode them via a (n,k) erasure correcting code. The n encoded
sub-bursts are transmitted over the MAC channel, according to specific
time/frequency-hopping patterns. Whenever n-e>=k sub-bursts (of the same burst)
are received without collisions, erasure decoding allows recovering the
remaining e sub-bursts (which were lost due to collisions). An interference
cancellation process can then take place, removing in e slots the interference
caused by the e recovered sub-bursts, possibly allowing the correct decoding of
sub-bursts related to other bursts. The process is thus iterated as for the
CRDSA case.Comment: Presented at the Future Network and MobileSummit 2010 Conference,
Florence (Italy), June 201
Generalized Stability Condition for Generalized and Doubly-Generalized LDPC Codes
In this paper, the stability condition for low-density parity-check (LDPC)
codes on the binary erasure channel (BEC) is extended to generalized LDPC
(GLDPC) codes and doublygeneralized LDPC (D-GLDPC) codes. It is proved that, in
both cases, the stability condition only involves the component codes with
minimum distance 2. The stability condition for GLDPC codes is always expressed
as an upper bound to the decoding threshold. This is not possible for D-GLDPC
codes, unless all the generalized variable nodes have minimum distance at least
3. Furthermore, a condition called derivative matching is defined in the paper.
This condition is sufficient for a GLDPC or DGLDPC code to achieve the
stability condition with equality. If this condition is satisfied, the
threshold of D-GLDPC codes (whose generalized variable nodes have all minimum
distance at least 3) and GLDPC codes can be expressed in closed form.Comment: 5 pages, 2 figures, to appear in Proc. of IEEE ISIT 200
MIMO Networks: the Effects of Interference
Multiple-input/multiple-output (MIMO) systems promise enormous capacity
increase and are being considered as one of the key technologies for future
wireless networks. However, the decrease in capacity due to the presence of
interferers in MIMO networks is not well understood. In this paper, we develop
an analytical framework to characterize the capacity of MIMO communication
systems in the presence of multiple MIMO co-channel interferers and noise. We
consider the situation in which transmitters have no information about the
channel and all links undergo Rayleigh fading. We first generalize the known
determinant representation of hypergeometric functions with matrix arguments to
the case when the argument matrices have eigenvalues of arbitrary multiplicity.
This enables the derivation of the distribution of the eigenvalues of Gaussian
quadratic forms and Wishart matrices with arbitrary correlation, with
application to both single user and multiuser MIMO systems. In particular, we
derive the ergodic mutual information for MIMO systems in the presence of
multiple MIMO interferers. Our analysis is valid for any number of interferers,
each with arbitrary number of antennas having possibly unequal power levels.
This framework, therefore, accommodates the study of distributed MIMO systems
and accounts for different positions of the MIMO interferers.Comment: Submitted to IEEE Trans. on Info. Theor
- …
