199 research outputs found
Supply Chain Key Success Factors for Organic Agricultural Products: Case Study in Taiwan
The Analytic Hierarchy Process (AHP) method is employed to evaluate the significance of various criteria influencing development of the organic agricultural products supply chain in Taiwan. A three-level hierarchical structure with four dimensions and 19 criteria was proposed based on literature review and personal interviews. Sourcing results from an AHP survey indicates that policies and laws are perceived as the most crucial factors influencing development of the organic agricultural products supply chain in Taiwan, followed by manufacturing capability, marketing capability, and logistics capability. Overall, results indicate that the five most critical criteria influencing development of the organic agricultural products supply chain in Taiwan are organic agricultural products approval and certification, capital acquiring, improving cultivated skills, establish stable system of distribution, and transparent and reasonable pricing. It is important to note that government and related authorities also put more effort in temperature control and post-harvest handling. Therefore, logistics capability is also a critical factor influencing development of the organic agricultural products supply chain in Taiwan whereas few previous studies have discussed this issue
Pyogenic Liver Abscess as Endemic Disease, Taiwan
Increasing incidence and microbiologic shift might have changed the manifestation of this condition
Corrigendum to “Caffeic Acid Phenethyl Ester Inhibits Oral Cancer Cell Metastasis by Regulating Matrix Metalloproteinase-2 and the Mitogen-Activated Protein Kinase Pathway”
Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector
A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence
Targeting a Chemo-Induced Adaptive Signaling Circuit Confers Therapeutic Vulnerabilities in Pancreatic Cancer
Advanced pancreatic ductal adenocarcinomas (PDACs) respond poorly to all therapies, including the first-line treatment, chemotherapy, the latest immunotherapies, and KRAS-targeting therapies. Despite an enormous effort to improve therapeutic efficacy in late-stage PDAC patients, effective treatment modalities remain an unmet medical challenge. To change the status quo, we explored the key signaling networks underlying the universally poor response of PDAC to therapy. Here, we report a previously unknown chemo-induced symbiotic signaling circuit that adaptively confers chemoresistance in patients and mice with advanced PDAC. By integrating single-cell transcriptomic data from PDAC mouse models and clinical pathological information from PDAC patients, we identified Yap1 in cancer cells and Cox2 in stromal fibroblasts as two key nodes in this signaling circuit. Co-targeting Yap1 in cancer cells and Cox2 in stroma sensitized PDAC to Gemcitabine treatment and dramatically prolonged survival of mice bearing late-stage PDAC, whereas simultaneously inhibiting Yap1 and Cox2 only in cancer cells was ineffective. Mechanistically, chemotherapy triggers non-canonical Yap1 activation by nemo-like kinase in 14-3-3ζ-overexpressing PDAC cells and increases secretion of CXCL2/5, which bind to CXCR2 on fibroblasts to induce Cox2 and PGE2 expression, which reciprocally facilitate PDAC cell survival. Finally, analyses of PDAC patient data revealed that patients who received Statins, which inhibit Yap1 signaling, and Cox2 inhibitors (including Aspirin) while receiving Gemcitabine displayed markedly prolonged survival compared to others. The robust anti-tumor efficacy of Statins and Aspirin, which co-target the chemo-induced adaptive circuit in the tumor cells and stroma, signifies a unique therapeutic strategy for PDAC
Chronic Kidney Disease Stage Is a Modulator on the Association between High-Sensitivity C-Reactive Protein and Coronary Vasospastic Angina
The prevalence of coronary vasospasm and also the factors associated with coronary vasospasm in CKD is still unclear. In this cross-sectional study of 859 consecutive CKD patients with angina pectoris received coronary catheterization, we evaluated the factors associated with coronary vasospasm. Patients with vasospasm were older and had higher peripheral blood white cell counts, higher peripheral blood monocyte cell counts, higher haemoglobin levels, higher hs-CRP levels, and lower levels of serum creatinine than patients without vasospasm. The results of multivariate logistic regression analysis revealed that peripheral blood monocyte count and hs-CRP level were independently associated with coronary vasospasm in patients with stage 1 CKD. Only peripheral blood monocyte count but not hs-CRP was independently associated with coronary vasospasm in patients with stages 2 and 3 of CKD. In conclusion, peripheral blood monocyte count is independently associated with coronary vasospasm in patients with stage 1–3 CKD, whereas hs-CRP is only independently associated with coronary vasospasm in patients with stage 1 CKD
Impacts of MicroRNA Gene Polymorphisms on the Susceptibility of Environmental Factors Leading to Carcinogenesis in Oral Cancer
BACKGROUND: MicroRNAs (miRNAs) have been regarded as a critical factor in targeting oncogenes or tumor suppressor genes in tumorigenesis. The genetic predisposition of miRNAs-signaling pathways related to the development of oral squamous cell carcinoma (OSCC) remains unresolved. This study examined the associations of polymorphisms with four miRNAs with the susceptibility and clinicopathological characteristics of OSCC. METHODOLOGY/PRINCIPAL FINDINGS: A total of 895 male subjects, including 425 controls and 470 male oral cancer patients, were selected. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and real-time PCR were used to analyze miRNA146a, miRNA196, miRNA499 and miRNA149 genetic polymorphisms between the control group and the case group. This study determined that a significant association of miRNA499 with CC genotype, as compared to the subjects with TT genotype, had a higher risk (AOR = 4.52, 95% CI = 1.24-16.48) of OSCC. Moreover, an impact of those four miRNAs gene polymorphism on the susceptibility of betel nut and tobacco consumption leading to oral cancer was also revealed. We found a protective effect between clinical stage development (AOR = 0.58, 95% CI = 0.36-0.94) and the tumor size growth (AOR = 0.47, 95% CI = 0.28-0.79) in younger patients (age<60). CONCLUSIONS: Our results suggest that genetic polymorphism of miRNA499 is associated with oral carcinogenesis, and the interaction of the miRNAs genetic polymorphism and environmental carcinogens is also related to an increased risk of oral cancer in Taiwanese
CAGI, the Critical Assessment of Genome Interpretation, establishes progress and prospects for computational genetic variant interpretation methods
Background:
The Critical Assessment of Genome Interpretation (CAGI) aims to advance the state-of-the-art for computational prediction of genetic variant impact, particularly where relevant to disease. The five complete editions of the CAGI community experiment comprised 50 challenges, in which participants made blind predictions of phenotypes from genetic data, and these were evaluated by independent assessors.
//
Results:
Performance was particularly strong for clinical pathogenic variants, including some difficult-to-diagnose cases, and extends to interpretation of cancer-related variants. Missense variant interpretation methods were able to estimate biochemical effects with increasing accuracy. Assessment of methods for regulatory variants and complex trait disease risk was less definitive and indicates performance potentially suitable for auxiliary use in the clinic.
//
Conclusions:
Results show that while current methods are imperfect, they have major utility for research and clinical applications. Emerging methods and increasingly large, robust datasets for training and assessment promise further progress ahead
NR1H4 mutation and rapid progressive intrahepatic cholestasis in infancy: A case report and literature review
Abstract Farnesoid X receptor (FXR) is a nuclear bile acid receptor encoded by the NR1H4 gene, a vital regulator of bile acid homeostasis. Pathogenic mutations of NR1H4 manifest as low gamma‐glutamyl transferase (GGT) cholestasis with rapid progression to liver failure, which is referred to as progressive familial intrahepatic cholestasis 5 (PFIC‐5). Herein, we present a case with rapid progressive cholestasis, liver failure in early infancy with the NR1H4 termination mutation
- …
