516 research outputs found
A minor role of WNK3 in regulating phosphorylation of renal NKCC2 and NCC co-transporters in vivo
Mutations in WNK1 and WNK4 kinase genes have been shown to cause a human hereditary hypertensive disease, pseudohypoaldosteronism type II (PHAII). We previously discovered that WNK kinases phosphorylate and activate OSR1/SPAK kinases that regulate renal SLC12A family transporters such as NKCC2 and NCC, and clarified that the constitutive activation of this cascade causes PHAII. WNK3, another member of the WNK kinase family, was reported to be a strong activator of NCC/NKCC2 when assayed in Xenopus oocytes, suggesting that WNK3 also plays a major role in regulating blood pressure and sodium reabsorption in the kidney. However, it remains to be determined whether WNK3 is in fact involved in the regulation of these transporters in vivo. To clarify this issue, we generated and analyzed WNK3 knockout mice. Surprisingly, phosphorylation and expression of OSR1, SPAK, NKCC2 and NCC did not decrease in knockout mouse kidney under normal and low-salt diets. Similarly, expression of epithelial Na channel and Na/H exchanger 3 were not affected in knockout mice. Na(+) and K(+) excretion in urine in WNK3 knockout mice was not affected under different salt diets. Blood pressure in WNK3 knockout mice was not lower under normal diet. However, lower blood pressure was observed in WNK3 knockout mice fed low-salt diet. WNK4 and WNK1 expression was slightly elevated in the knockout mice under low-salt diet, suggesting compensation for WNK3 knockout by these WNKs. Thus, WNK3 may have some role in the WNK-OSR1/SPAK-NCC/NKCC2 signal cascade in the kidney, but its contribution to total WNK kinase activity may be minimal
Effect of Atomic Oxygen Exposure on Surface Resistivity Change of Spacecraft Insulator Material
Spacecraft surface charging can lead to arcing and a loss of electricity generation capability in solar panels or even loss of a satellite. The charging problem may be further aggravated by atomic oxygen (AO) exposure in Low Earth orbits, which modifies the surface of materials like polyimide, Teflon, anti-reflective coatings, cover glass etc, used on satellite surfaces, affecting materials properties, such as resistivity, secondary electron emissivity and photo emission, which govern the charging behavior. These properties are crucial input parameters for spacecraft charging analysis. To study the AO exposure effect on charging governing properties, an atomic oxygen exposure facility based on laser detonation of oxygen was built. The facility produces AO with a peak velocity value around 10-12km/s and a higher flux than that existing in orbit. After exposing the polyimide test material to the equivalent of 10 years of AO fluence at an altitude of 700-800 km, surface charging properties like surface resistivity and volume resistivity were measured. The measurement was performed in a vacuum using the charge storage decay method at room temperature, which is considered the most appropriate for measuring resistivity for space applications. The results show that the surface resistivity increases and the volume resistivity remains almost the same for the AO exposure fluence of 5.4×1018 atoms cm-2
Observation of Spin-Dependent Charge Symmetry Breaking in Interaction: Gamma-Ray Spectroscopy of He
The energy spacing between the ground-state spin doublet of He(1,0) was determined to be keV, by measuring
rays for the transition with a high efficiency germanium
detector array in coincidence with the He He
reaction at J-PARC. In comparison to the corresponding energy spacing in the
mirror hypernucleus H, the present result clearly indicates the
existence of charge symmetry breaking (CSB) in interaction. It is
also found that the CSB effect is large in the ground state but is by one
order of magnitude smaller in the excited state, demonstrating that the
CSB interaction has spin dependence
Search for the pentaquark via the reaction at 1.92 GeV/
The pentaquark baryon was searched for via the
reaction in a missing-mass resolution of 1.4 MeV/(FWHM) at J-PARC.
meson beams were incident on the liquid hydrogen target with the beam momentum
of 1.92 GeV/. No peak structure corresponding to the mass was
observed. The upper limit of the production cross section averaged over the
scattering angle of 2 to 15 in the laboratory frame was
obtained to be 0.26 b/sr in the mass region of 1.511.55 GeV/.The
upper limit of the decay width using the effective Lagrangian
approach was obtained to be 0.72 MeV/ and 3.1 MeV/ for
and , respectively.Comment: 5 pages, 3 figures, 1 tabl
- …
