4,327 research outputs found

    Realtime object extraction and tracking with an active camera using image mosaics

    Get PDF
    [[abstract]]Moving object extraction plays a key role in applications such as object-based videoconference, surveillance, and so on. The dimculties of moving object segmentation lie in the fact that physical objects are normally not homogeneous with to low-level features and it's usually tough to segment them accnrately and efficiently. Object segmentation based on prestored background information has proved to be effective and efficient in several applications such as videophone, video conferencing, and surveillance, etc. The previous works, however, were mainly concentrated on object segmentation with a static camera and in a stationary background. In this paper, we propose a robust and fast segmentation algorithm and a reliable tracking strategy without knowing the shape of the object in advance. The proposed system can real-time extract the foreground from the background and track the moving object with an active (pan-tilt) camera such that the moving object always stays around the center of images.[[fileno]]2030144030033[[department]]電機工程學

    FFTPL: An Analytic Placement Algorithm Using Fast Fourier Transform for Density Equalization

    Full text link
    We propose a flat nonlinear placement algorithm FFTPL using fast Fourier transform for density equalization. The placement instance is modeled as an electrostatic system with the analogy of density cost to the potential energy. A well-defined Poisson's equation is proposed for gradient and cost computation. Our placer outperforms state-of-the-art placers with better solution quality and efficiency

    Improvement of n-butanol tolerance in Escherichia coli by membrane-targeted tilapia metallothionein

    Get PDF
    Background: Though n-butanol has been proposed as a potential transportation biofuel, its toxicity oftencauses oxidative stress in the host microorganism and is considered one of the bottlenecks preventing itsefficient mass production.Results: To relieve the oxidative stress in the host cell, metallothioneins (MTs), which are known as scavengersfor reactive oxygen species (ROS), were engineered in E. coli hosts for both cytosolic and outer-membrane-targeted (osmoregulatory membrane protein OmpC fused) expression. Metallothioneins from human (HMT),mouse (MMT), and tilapia fish (TMT) were tested. The host strain expressing membrane-targeted TMT showed thegreatest ability to reduce oxidative stresses induced by n-butanol, ethanol, furfural, hydroxymethylfurfural, andnickel. The same strain also allowed for an increased growth rate of recombinant E. coli under n-butanol stress.Further experiments indicated that the TMT-fused OmpC protein could not only function in ROS scavenging butalso regulate either glycine betaine (GB) or glucose uptake via osmosis, and the dual functional fusion proteincould contribute in an enhancement of the host microorganism’s growth rate.Conclusions: The abilities of scavenging intracellular or extracellular ROS by these engineering E. coli wereexamined, and TMT show the best ability among three MTs. Additionally, the membrane-targeted fusion protein,OmpC-TMT, improved host tolerance up to 1.5% n-butanol above that of TMT which is only 1%. These resultspresented indicate potential novel approaches for engineering stress tolerant microorganism strains

    Construction of Cell–Extracellular Matrix Microenvironments by Conjugating ECM Proteins on Supported Lipid Bilayers

    Get PDF
    The cell membrane is an organized and fluid structure that modulates cellular activities in response to specific extracellular signals, and maintains the critical communication, integration, and homeostasis between the cytosol and the extracellular matrix (ECM). In recent years, tissue engineering and cell biology research has been rapidly progressed by a remarkable understanding of cell and ECM interfaces. In this review, the design of new biomimetic platforms based on the conjugation of ECM proteins on solid supported lipid bilayers (SLBs) will be summarized. The platforms provide a better system to evaluate cellular responses to specific recognition events, gradient, mechanical property, nanostructures, and inter- and intra-molecular interactions of ECM proteins on a non-fouling and fluid membrane. Moreover, the findings from the molecular interactions and cellular activities will be highlighted to look into the cell-materials mechanisms

    Toll-like receptor 9 agonist enhances anti-tumor immunity and inhibits tumor-associated immunosuppressive cells numbers in a mouse cervical cancer model following recombinant lipoprotein therapy

    Get PDF
    BACKGROUND: Although cytotoxic T lymphocytes (CTLs) play a major role in eradicating cancer cells during immunotherapy, the cancer-associated immunosuppressive microenvironment often limits the success of such therapies. Therefore, the simultaneous induction of cancer-specific CTLs and reversal of the immunosuppressive tumor microenvironment may be more effectively achieved through a single therapeutic vaccine. A recombinant lipoprotein with intrinsic Toll-like receptor 2 (TLR2) agonist activity containing a mutant form of E7 (E7m) and a bacterial lipid moiety (rlipo-E7m) has been demonstrated to induce robust CTL responses against small tumors. This treatment in combination with other TLR agonists is able to eliminate large tumors. METHODS: Mouse bone marrow-derived dendritic cells (DCs) were employed to determine the synergistic production of pro-inflammatory cytokines upon combination of rlipo-E7m and other TLR agonists. Antigen-specific CTL responses were investigated using immunospots or in vivo cytolytic assays after immunization in mice. Mice bearing various tumor sizes were used to evaluate the anti-tumor effects of the formulation. Specific subpopulations of immunosuppressive cells in the tumor infiltrate were quantitatively determined by flow cytometry. RESULTS: We demonstrate that a TLR9 agonist (unmethylated CpG oligodeoxynucleotide, CpG ODN) enhances CTL responses and eradicates large tumors when combined with rlipo-E7m. Moreover, combined treatment with rlipo-E7m and CpG ODN effectively increases tumor infiltration by CTLs and reduces the numbers of myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) in the tumor microenvironment. CONCLUSION: These findings suggest that the dramatic anti-tumor effects of the recombinant lipoprotein together with CpG ODN may reflect the amplification of CTL responses and the repression of the immunosuppressive environment. This promising approach could be applied for the development of additional therapeutic cancer vaccines

    The nucleolar protein NIFK promotes cancer progression via CK1α/β-catenin in metastasis and Ki-67-dependent cell proliferation.

    Get PDF
    Nucleolar protein interacting with the FHA domain of pKi-67 (NIFK) is a Ki-67-interacting protein. However, its precise function in cancer remains largely uninvestigated. Here we show the clinical significance and metastatic mechanism of NIFK in lung cancer. NIFK expression is clinically associated with poor prognosis and metastasis. Furthermore, NIFK enhances Ki-67-dependent proliferation, and promotes migration, invasion in vitro and metastasis in vivo via downregulation of casein kinase 1α (CK1α), a suppressor of pro-metastatic TCF4/β-catenin signaling. Inversely, CK1α is upregulated upon NIFK knockdown. The silencing of CK1α expression in NIFK-silenced cells restores TCF4/β-catenin transcriptional activity, cell migration, and metastasis. Furthermore, RUNX1 is identified as a transcription factor of CSNK1A1 (CK1α) that is negatively regulated by NIFK. Our results demonstrate the prognostic value of NIFK, and suggest that NIFK is required for lung cancer progression via the RUNX1-dependent CK1α repression, which activates TCF4/β-catenin signaling in metastasis and the Ki-67-dependent regulation in cell proliferation
    corecore