3,883 research outputs found
Efficient and Perfect domination on circular-arc graphs
Given a graph , a \emph{perfect dominating set} is a subset of
vertices such that each vertex is
dominated by exactly one vertex . An \emph{efficient dominating set}
is a perfect dominating set where is also an independent set. These
problems are usually posed in terms of edges instead of vertices. Both
problems, either for the vertex or edge variant, remains NP-Hard, even when
restricted to certain graphs families. We study both variants of the problems
for the circular-arc graphs, and show efficient algorithms for all of them
A Developmental Learning Approach of Mobile Manipulator via Playing
Inspired by infant development theories, a robotic developmental model combined with game elements is proposed in this paper. This model does not require the definition of specific developmental goals for the robot, but the developmental goals are implied in the goals of a series of game tasks. The games are characterized into a sequence of game modes based on the complexity of the game tasks from simple to complex, and the task complexity is determined by the applications of developmental constraints. Given a current mode, the robot switches to play in a more complicated game mode when it cannot find any new salient stimuli in the current mode. By doing so, the robot gradually achieves it developmental goals by playing different modes of games. In the experiment, the game was instantiated into a mobile robot with the playing task of picking up toys, and the game is designed with a simple game mode and a complex game mode. A developmental algorithm, “Lift-Constraint, Act and Saturate,” is employed to drive the mobile robot move from the simple mode to the complex one. The experimental results show that the mobile manipulator is able to successfully learn the mobile grasping ability after playing simple and complex games, which is promising in developing robotic abilities to solve complex tasks using games
Perfect edge domination : hard and solvable cases
Let G be an undirected graph. An edge of Gdominates itself and all edges adjacent to it. A subset E′ of edges of G is an edge dominating set of G, if every edge of the graph is dominated by some edge of E′. We say that E′ is a perfect edge dominating set of G, if every edge not in E′ is dominated by exactly one edge of E′. The perfect edge dominating problem is to determine a least cardinality perfect edge dominating set of G. For this problem, we describe two NP-completeness proofs, for the classes of claw-free graphs of degree at most 3, and for bounded degree graphs, of maximum degree at most d≥ 3 and large girth. In contrast, we prove that the problem admits an O(n) time solution, for cubic claw-free graphs. In addition, we prove a complexity dichotomy theorem for the perfect edge domination problem, based on the results described in the paper. Finally, we describe a linear time algorithm for finding a minimum weight perfect edge dominating set of a P5-free graph. The algorithm is robust, in the sense that, given an arbitrary graph G, either it computes a minimum weight perfect edge dominating set of G, or it exhibits an induced subgraph of G, isomorphic to a P5.Fil: Lin, Min Chih. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Lozin, Vadim. University of Warwick; Reino UnidoFil: Moyano, Verónica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil. Instituto Nacional de Metrologia, Qualidade e Tecnologia; Brasi
Isomorphism of graph classes related to the circular-ones property
We give a linear-time algorithm that checks for isomorphism between two 0-1
matrices that obey the circular-ones property. This algorithm leads to
linear-time isomorphism algorithms for related graph classes, including Helly
circular-arc graphs, \Gamma-circular-arc graphs, proper circular-arc graphs and
convex-round graphs.Comment: 25 pages, 9 figure
Volatile Organic Compound (VOC) measurements in the Pearl River Delta (PRD) region, China
International audienceWe measured levels of ambient volatile organic compounds (VOCs) at seven sites in the Pearl River Delta (PRD) region of China during the Air Quality Monitoring Campaign spanning 4 October to 3 November 2004. Two of the sites, Guangzhou (GZ) and Xinken (XK), were intensive sites at which we collected multiple daily canister samples. The observations reported here provide a look at the VOC distribution, speciation, and photochemical implications in the PRD region. Alkanes constituted the largest percentage (>40%) in mixing ratios of the quantified VOCs at six sites; the exception was one major industrial site that was dominated by aromatics (about 52%). Highly elevated VOC levels occurred at GZ during two pollution episodes; however, the chemical composition of VOCs did not exhibit noticeable changes during these episodes. We calculated the OH loss rate to estimate the chemical reactivity of all VOCs. Of the anthropogenic VOCs, alkenes played a predominant role in VOC reactivity at GZ, whereas the contributions of reactive aromatics were more important at XK. Our preliminary analysis of the VOC correlations suggests that the ambient VOCs at GZ came directly from local sources (i.e., automobiles); those at XK were influenced by both local emissions and transportation of air mass from upwind areas
Use of human gestures for controlling a mobile robot via adaptive CMAC network and fuzzy logic controller
Mobile robots with manipulators have been more and more commonly applied in extreme and hostile environments to assist or even replace human operators for complex tasks. In addition to autonomous abilities, mobile robots need to facilitate the human–robot interaction control mode that enables human users to easily control or collaborate with robots. This paper proposes a system which uses human gestures to control an autonomous mobile robot integrating a manipulator and a video surveillance platform. A human user can control the mobile robot just as one drives an actual vehicle in the vehicle’s driving cab. The proposed system obtains human’s skeleton joints information using a motion sensing input device, which is then recognized and interpreted into a set of control commands. This is implemented, based on the availability of training data set and requirement of in-time performance, by an adaptive cerebellar model articulation controller neural network, a finite state machine, a fuzzy controller and purposely designed gesture recognition and control command generation systems. These algorithms work together implement the steering and velocity control of the mobile robot in real-time. The experimental results demonstrate that the proposed approach is able to conveniently control a mobile robot using virtual driving method, with smooth manoeuvring trajectories in various speeds
- …
