12,446 research outputs found

    Strategic Analysis and Model Construction on Conflict Resolution with Motion Game Theory

    Get PDF
    This research uses the “Participating Observation Method” to observe the interaction between manufacturer and distributor negotiation strategies, determine the preference and expectation of participants, and establish a framework for this type of research. Then it sets up the “analysis framework of negotiation strategies” between the manufacturer and the distributor based on an analysis of the respective conditions, advantages, and disadvantages of the manufacturer and distributor. Thirdly, this study sets up a reward matrix of the strategy action game between the manufacturer and the distributor. Then establishes a set of feasible “negotiation models” based on the reward matrix of the strategy game between the both parties to observe how the manufacturer and the distributor make their own bargaining decisions in the situation of information asymmetry or exterior opportunity/threat. Finally, this study establishes a “multi-agent strategy game protocol system model” to solve the conflict resulting from the self-strategizing of both parties for their own interests, and to achieve the utmost efficiency in the negotiation

    Obstacle-Resistant Deployment Algorithms for Wireless Sensor Networks

    Get PDF
    [[abstract]]Node deployment is an important issue in wireless sensor networks (WSNs). Sensor nodes should be efficiently deployed in a predetermined region in a low-cost and high-coverage-quality manner. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and, therefore, increase hardware costs and create coverage holes. This paper presents the efficient obstacle-resistant robot deployment (ORRD) algorithm, which involves the design of a node placement policy, a serpentine movement policy, obstacle-handling rules, and boundary rules. By applying the proposed ORRD, the robot rapidly deploys a near-minimal number of sensor nodes to achieve full sensing coverage, even though there exist unpredicted obstacles with regular or irregular shapes. Performance results reveal that ORRD outperforms the existing robot deployment mechanism in terms of power conservation and obstacle resistance and, therefore, achieves better deployment performance.[[incitationindex]]SC

    A Bayesian measurement error model for two-channel cell-based RNAi data with replicates

    Full text link
    RNA interference (RNAi) is an endogenous cellular process in which small double-stranded RNAs lead to the destruction of mRNAs with complementary nucleoside sequence. With the production of RNAi libraries, large-scale RNAi screening in human cells can be conducted to identify unknown genes involved in a biological pathway. One challenge researchers face is how to deal with the multiple testing issue and the related false positive rate (FDR) and false negative rate (FNR). This paper proposes a Bayesian hierarchical measurement error model for the analysis of data from a two-channel RNAi high-throughput experiment with replicates, in which both the activity of a particular biological pathway and cell viability are monitored and the goal is to identify short hair-pin RNAs (shRNAs) that affect the pathway activity without affecting cell activity. Simulation studies demonstrate the flexibility and robustness of the Bayesian method and the benefits of having replicates in the experiment. This method is illustrated through analyzing the data from a RNAi high-throughput screening that searches for cellular factors affecting HCV replication without affecting cell viability; comparisons of the results from this HCV study and some of those reported in the literature are included.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS496 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    An Obstacle-Free and Power Efficient Deployment Algorithm for Wireless Sensor Networks

    Get PDF
    [[abstract]]This paper proposes a robot-deployment algorithm that overcomes unpredicted obstacles and employs full-coverage deployment with a minimal number of sensor nodes. Without the location information, node placement and spiral movement policies are proposed for the robot to deploy sensors efficiently to achieve power conservation and full coverage, while an obstacle surrounding movement policy is proposed to reduce the impacts of an obstacle upon deployment. Simulation results reveal that the proposed robot-deployment algorithm outperforms most existing robot-deployment mechanisms in power conservation and obstacle resistance and therefore achieves a better deployment performance.[[notice]]補正完

    Integrin-mediated membrane blebbing is dependent on the NHE1 and NCX1 activities.

    Get PDF
    Integrin-mediated signal transduction and membrane blebbing have been well studied to modulate cell adhesion, spreading and migration^1-6^. However, the relationship between membrane blebbing and integrin signaling has not been explored. Here we show that integrin-ligand interaction induces membrane blebbing and membrane permeability change. We found that sodium-proton exchanger 1 (NHE1) and sodium-calcium exchanger 1 (NCX1) are located in the membrane blebbing sites and inhibition of NHE1 disrupts membrane blebbing and decreases membrane permeability change. However, inhibition of NCX1 enhances cell blebbing to cause cell swelling which is correlated with an intracellular sodium accumulation induced by NHE17. These data suggest that sodium influx induced by NHE1 is a driving force for membrane blebbing growth, while sodium efflux induced by NCX1 in a reverse mode causes membrane blebbing retraction. Together, these data reveal a novel function of NHE1 and NCX1 in membrane permeability change and blebbing and provide the link for integrin signaling and membrane blebbing

    A micromachined flow shear-stress sensor based on thermal transfer principles

    Get PDF
    Microhot-film shear-stress sensors have been developed by using surface micromachining techniques. The sensor consists of a suspended silicon-nitride diaphragm located on top of a vacuum-sealed cavity. A heating and heat-sensing element, made of polycrystalline silicon material, resides on top of the diaphragm. The underlying vacuum cavity greatly reduces conductive heat loss to the substrate and therefore increases the sensitivity of the sensor. Testing of the sensor has been conducted in a wind tunnel under three operation modes-constant current, constant voltage, and constant temperature. Under the constant-temperature mode, a typical shear-stress sensor exhibits a time constant of 72 μs
    corecore