49 research outputs found

    Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Mollusca

    Get PDF
    The file attached is the Published/publisher’s pdf version of the article. This is an OpenAccess article.Copyright Helena Wiklund et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    The Msd1–Wdr8–Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies

    Get PDF
    The minus ends of spindle microtubules are anchored to a microtubule-organizing center. The conserved Msd1/SSX2IP proteins are localized to the spindle pole body (SPB) and the centrosome in fission yeast and humans, respectively, and play a critical role in microtubule anchoring. In this paper, we show that fission yeast Msd1 forms a ternary complex with another conserved protein, Wdr8, and the minus end–directed Pkl1/kinesin-14. Individual deletion mutants displayed the identical spindle-protrusion phenotypes. Msd1 and Wdr8 were delivered by Pkl1 to mitotic SPBs, where Pkl1 was tethered through Msd1–Wdr8. The spindle-anchoring defect imposed by msd1/wdr8/pkl1 deletions was suppressed by a mutation of the plus end–directed Cut7/kinesin-5, which was shown to be mutual. Intriguingly, Pkl1 motor activity was not required for its anchoring role once targeted to the SPB. Therefore, spindle anchoring through Msd1–Wdr8–Pkl1 is crucial for balancing the Cut7/kinesin-5–mediated outward force at the SPB. Our analysis provides mechanistic insight into the spatiotemporal regulation of two opposing kinesins to ensure mitotic spindle bipolarity.This research was supported by Cancer Research UK (T. Toda)

    Msd1/ SSX

    Full text link

    Left in the cold? Evolutionary origin of Laternula elliptica a keystone bivalve species of Antarctic benthos

    Get PDF
    The large, burrowing bivalve Laternula elliptica is an abundant component of shallow-water soft-substrate communities around Antarctica but its congeners are temperate and tropical in distribution and their phylogenetic relationships are obscure. A new molecular analysis of Laternulidae species shows that there are two distinct clades, one of Exolaternula species, E. spengleri and E. liautaudi, possessing a ligamental lithodesma and a larger clade of species lacking the lithodesma. Of the latter, Laternula elliptica is a sister taxon to temperate and tropical species, including those that live around the coasts of Australia from Tasmania to Darwin. It is suggested that L. elliptica was left isolated around Antarctica following the opening of the Tasman Gateway and initiation of the Circum-Antarctic Current as Australia drifted northwards following the final breakup of Gondwana. A further scenario is that as Australia moved closer to Asia, species spread into tropical habitats and more widely to the Red Sea and Japan. Exolaternula species have a likely Tethyan origin and the present-day range is from the Arabian Gulf, around southern Asia and as far north as southern Russia

    Extracellular High Mobility Group Box 1 Plays a Role in the Effect of Bone Marrow Mononuclear Cell Transplantation for Heart Failure

    Get PDF
    Transplantation of unfractionated bone marrow mononuclear cells (BMCs) repairs and/or regenerates the damaged myocardium allegedly due to secretion from surviving BMCs (paracrine effect). However, donor cell survival after transplantation is known to be markedly poor. This discrepancy led us to hypothesize that dead donor BMCs might also contribute to the therapeutic benefits from BMC transplantation. High mobility group box 1 (HMGB1) is a nuclear protein that stabilizes nucleosomes, and also acts as a multi-functional cytokine when released from damaged cells. We thus studied the role of extracellular HMGB1 in the effect of BMC transplantation for heart failure. Four weeks after coronary artery ligation in female rats, syngeneic male BMCs (or PBS only as control) were intramyocardially injected with/without anti-HMGB1 antibody or control IgG. One hour after injection, ELISA showed that circulating extracellular HMGB1 levels were elevated after BMC transplantation compared to the PBS injection. Quantitative donor cell survival assessed by PCR for male-specific sry gene at days 3 and 28 was similarly poor. Echocardiography and catheterization showed enhanced cardiac function after BMC transplantation compared to PBS injection at day 28, while this effect was abolished by antibody-neutralization of HMGB1. BMC transplantation reduced post-infarction fibrosis, improved neovascularization, and increased proliferation, while all these effects in repairing the failing myocardium were eliminated by HMGB1-inhibition. Furthermore, BMC transplantation drove the macrophage polarization towards alternatively-activated, anti-inflammatory M2 macrophages in the heart at day 3, while this was abolished by HMGB1-inhibition. Quantitative RT-PCR showed that BMC transplantation upregulated expression of an anti-inflammatory cytokine IL-10 in the heart at day 3 compared to PBS injection. In contrast, neutralizing HMGB1 by antibody-treatment suppressed this anti-inflammatory expression. These data suggest that extracellular HMGB1 contributes to the effect of BMC transplantation to recover the damaged myocardium by favorably modulating innate immunity in heart failure

    New molecular phylogeny of Lucinidae: increased taxon base with focus on tropical Western Atlantic species (Mollusca: Bivalvia)

    No full text
    A new molecular phylogeny of the Lucinidae using 18S and 28S rRNA and cytochrome b genes includes many species from the tropical Western Atlantic as well as additional taxa from the Indo-West Pacific. This study provides a phylogenetic framework for a new taxonomy of tropical Western Atlantic lucinids. The analysis confirmed five major clades—Pegophyseminae, Leucosphaerinae, Myrteinae, Codakiinae and Lucininae, with Monitilorinae and Fimbriinae represented by single species. The Leucosphaerinae are expanded and include Callucina winckworthi and the W. Atlantic Myrtina pristiphora that groups with several Indo-West Pacific Myrtina species. Within the Codakiinae two abundant species of Ctena from the Western Atlantic with similar shells are discriminated as C. orbiculata and C. imbricatula, while in the Indo-West Pacific Ctena bella is a probable species complex. The Lucininae is the most species rich and disparate subfamily with several subclades apparent. Three species of Lucina are recognized in the W. Atlantic L. aurantia, L. pensylvanica and L. roquesana. Pleurolucina groups near to Cavilinga and Lucina, while Lucinisca muricata is more closely related to the E. Pacific L. fenestrata than to the Atlantic L. nassula. A new species of Parvilucina is identified from molecular analyses having been confounded with Parvilucina pectinata but differs in ligament structure. Also, the former Parvilucina clenchi is more distant and assigned to Guyanella. </jats:p

    New molecular phylogeny of Lucinidae: increased taxon base with focus on tropical Western Atlantic species (Mollusca: Bivalvia)

    No full text
    Taylor, John D., Glover, Emily A., Smith, Lisa, Ikebe, Chiho, Williams, Suzanne T. (2016): New molecular phylogeny of Lucinidae: increased taxon base with focus on tropical Western Atlantic species (Mollusca: Bivalvia). Zootaxa 4196 (3): 381-398, DOI: http://doi.org/10.11646/zootaxa.4196.3.

    The conserved Wdr8-hMsd1/SSX2IP complex localises to the centrosome and ensures proper spindle length and orientation

    Get PDF
    AbstractThe centrosome plays a pivotal role in a wide range of cellular processes and its dysfunction is causally linked to many human diseases including cancer and developmental and neurological disorders. This organelle contains more than one hundred components, and yet many of them remain uncharacterised. Here we identified a novel centrosome protein Wdr8, based upon the structural conservation of the fission yeast counterpart. We showed that Wdr8 constitutively localises to the centrosome and super resolution microscopy uncovered that this protein is enriched at the proximal end of the mother centriole. Furthermore, we identified hMsd1/SSX2IP, a conserved spindle anchoring protein, as one of Wdr8 interactors by mass spectrometry. Wdr8 formed a complex and partially colocalised with hMsd1/SSX2IP. Intriguingly, knockdown of Wdr8 or hMsd1/SSX2IP displayed very similar mitotic defects, in which spindle microtubules became shortened and misoriented. Indeed, Wdr8 depletion resulted in the reduced recruitment of hMsd1/SSX2IP to the mitotic centrosome, though the converse is not true. Together, we propose that the conserved Wdr8-hMsd1/SSX2IP complex plays a critical role in controlling proper spindle length and orientation

    &lt;p&gt;&lt;strong&gt;Unexpected species diversity within Sri Lanka’s snakehead fishes of the &lt;em&gt;Channa&lt;/em&gt; &lt;em&gt;marulius&lt;/em&gt; group (Teleostei: Channidae)&lt;/strong&gt;&lt;/p&gt;

    No full text
    The taxonomic status of the large snakeheads of the Channa marulius group that occur in Sri Lanka is reviewed and clarified. Two species are recognized from the island, based on both morphological and molecular (cytochrome c oxidase subunit 1: cox1) differentiation: C. marulius Hamilton from the northern dry zone and C. ara Deraniyagala from the middle and lower regions of the Mahaweli basin. Channa ara is endemic to Sri Lanka and can be distinguished from its Marulius group congeners, C. marulius, C. aurolineata and C. auroflammea, by having fewer dorsal- and anal-fin rays, fewer lateral-line scales and fewer vertebrae; from C. marulioides by a different adult colour pattern; and from C. pseudomarulius by having more vertebrae. At the cox1 barcoding locus, Channa ara is at least 3.6% genetically different from C. marulius, and at least 8% different from the other described species in the group. Specimens collected from the southwestern wet zone in Sri Lanka are a puzzling third component of the Marulius group’s diversity, uncovered in this study, and identified here as C. cf. ara. Whilst genetically more similar to C. marulius, C. cf. ara possesses fewer dorsal- and anal-fin rays, fewer lateral-line scales and fewer vertebrae and is therefore morphologically more similar to C. ara. Channa ara can be distinguished from C. cf. ara, however, by differences in circumpeduncular scale count, adult colour pattern, and by an uncorrected pairwise genetic distance of 3.7% in cox1 sequences. A neotype is designated for Ophicephalus marulius ara Deraniyagala. </jats:p
    corecore