2,542 research outputs found
An experimental study of oscillatory flow phenomena in diffusers at low reynolds numbers
An experimental study of oscillatory flow phenomena in diffusers at low Reynolds numbers has been carried out
An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly
Erythropoetin-producing hepatoma (Eph) receptors are cell-surface protein tyrosine kinases mediating cell-cell communication. Upon activation, they form signaling clusters. We report crystal structures of the full ectodomain of human EphA2 (eEphA2) both alone and in complex with the receptor-binding domain of the ligand ephrinA5 (ephrinA5 RBD). Unliganded eEphA2 forms linear arrays of staggered parallel receptors involving two patches of residues conserved across A-class Ephs. eEphA2-ephrinA5 RBD forms a more elaborate assembly, whose interfaces include the same conserved regions on eEphA2, but rearranged to accommodate ephrinA5 RBD. Cell-surface expression of mutant EphA2s showed that these interfaces are critical for localization at cell-cell contacts and activation-dependent degradation. Our results suggest a 'nucleation' mechanism whereby a limited number of ligand-receptor interactions 'seed' an arrangement of receptors which can propagate into extended signaling arrays
Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection.
A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Due to the impracticalities of conducting host-microbe systems-based studies in HIV infected patients, we have evaluated the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease. We present the first description of the rhesus macaque oral microbiota and show that a mixture of human commensal bacteria and "macaque versions" of human commensals colonize the tongue dorsum and dental plaque. Our findings indicate that SIV infection results in chronic activation of antiviral and inflammatory responses in the tongue mucosa that may collectively lead to repression of epithelial development and impact the microbiome. In addition, we show that dysbiosis of the lingual microbiome in SIV infection is characterized by outgrowth of Gemella morbillorum that may result from impaired macrophage function. Finally, we provide evidence that the increased capacity of opportunistic pathogens (e.g. E. coli) to colonize the microbiome is associated with reduced production of antimicrobial peptides
A low density of 0.8 g/cc for the Trojan binary asteroid 617 Patroclus
The Trojan population consists of two swarms of asteroids following the same
orbit as Jupiter and located at the L4 and L5 Lagrange points of the
Jupiter-Sun system (leading and following Jupiter by 60 degrees). The asteroid
617 Patroclus is the only known binary Trojan (Merline et al. 2001). The orbit
of this double system was hitherto unknown. Here we report that the components,
separated by 680 km, move around the system centre of mass, describing roughly
a circular orbit. Using the orbital parameters, combined with thermal
measurements to estimate the size of the components, we derive a very low
density of 0.8 g/cc. The components of Patroclus are therefore very porous or
composed mostly of water ice, suggesting that they could have been formed in
the outer part of the solar system.Comment: 10 pages, 3 figures, 1 tabl
Analytical Heat Transfer
Analytical Heat Transfer explains how to analyze and solve conduction, convection, and radiation heat transfer problems. It enables students to tackle complex engineering heat transfer problems prevalent in practice. Covering heat transfer in high-speed flows and unsteady highly turbulent flows, the book also discusses enhanced heat transfer in channels, heat transfer in rotating channels, numerical modeling for turbulent flow heat transfer, and thermally developing heat transfer in a circular tube. The second edition features new content on Duhamel’s superposition method, Green’s function method for transient heat conduction, finite-difference method for steady state and transient heat conduction in cylindrical coordinates, and laminar mixed convection. It includes two new chapters on laminar-to-turbulent transitional heat transfer and turbulent flow heat transfer enhancement, in addition to end-of-chapter problems. The book bridges the gap between basic heat transfer undergraduate courses and advanced heat transfer graduate courses for a single semester of intermediate heat transfer, advanced conduction/radiation heat transfer, or convection heat transfer. Features: Focuses on analyzing and solving classic heat transfer problems in conduction, convection, and radiation Covers 2-D and 3-D view factor evaluation, combined radiation with conduction and/or convection, and gas radiation optically thin and optically thick limits Features updated content and new chapters on mass and heat transfer analogy, thermally developing heat transfer in a circular tube, laminar-turbulent transitional heat transfer, unsteady highly turbulent flows, enhanced heat transfer in channels, heat transfer in rotating channels, and numerical modeling for turbulent flow heat transfer Provides step-by-step mathematical formula derivations, analytical solution procedures, and demonstration examples Includes end-of-chapter problems with an accompanying Solutions Manual for instructors This book is ideal for undergraduate and graduate students studying basic heat transfer and advanced heat transfer
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Simulation of the many-body dynamical quantum Hall effect in an optical lattice
We propose an experimental scheme to simulate the many-body dynamical quantum
Hall effect with ultra-cold bosonic atoms in a one-dimensional optical lattice.
We first show that the required model Hamiltonian of a spin-1/2 Heisenberg
chain with an effective magnetic field and tunable parameters can be realized
in this system. For dynamical response to ramping the external fields, the
quantized plateaus emerge in the Berry curvature of the interacting atomic spin
chain as a function of the effective spin-exchange interaction. The
quantization of this response in the parameter space with the
interaction-induced topological transition characterizes the many-body
dynamical quantum Hall effect. Furthermore, we demonstrate that this phenomenon
can be observed in practical cold-atom experiments with numerical simulations.Comment: 8 pages, 3 figures; accepted in Quantum Information Processin
The storage-lesion in murine red blood cells: comparison to stored human red blood cells and applications for an animal model of transfusion efficacy
Why do you drink caffeine? The development of the Motives for Caffeine Consumption Questionnaire (MCCQ) and its relationship with gender, age and the types of caffeinated beverages
Caffeine is the most popular psychoactive substance that is consumed worldwide. As motives influence behavior, investigation of the motivational background of caffeine consumption should help provide a better understanding of the popularity of caffeinated products. The present study aimed (i) to explore and operationalize the motives of caffeine consumption and (ii) to reveal possible differences in the motives regarding gender, age and the type of caffeinated products consumed. Motives for caffeine consumption were collected from regular caffeine consumers (N = 26) and were informed by a review of the relevant literature. Following this, a cross-sectional study was conducted on a convenience sample of Hungarian university students and working adults (N = 598). The participants completed the Motives for Caffeine Consumption Questionnaire and the Caffeine Consumption Questionnaire. Six motivational factors were identified: Alertness, Habit, Mood, Social, Taste and Symptom Management. Women had higher scores on Habit, Social, Taste and Symptom Management. Younger participants had higher scores on Alertness than the older group, and the older group had higher scores on Habit and Symptom Management. Five types of caffeine users were identified. Those who consumed (i) coffee, (ii) tea, (iii) energy drinks, (iv) coffee and tea and (v) mixed drinks. Several differences between the five groups were revealed across all motives except for Taste. The present study developed a robust psychometric instrument for assessing caffeine consumption motives. The factors varied in importance in relation to gender, age and caffeine consumption habits
- …
