1,222 research outputs found
Characterizing genomic alterations in cancer by complementary functional associations.
Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes
Security challenges of small cell as a service in virtualized mobile edge computing environments
Research on next-generation 5G wireless networks is currently attracting a lot of attention in both academia and industry. While 5G development and standardization activities are still at their early stage, it is widely acknowledged that 5G systems are going to extensively rely on dense small cell deployments, which would exploit infrastructure and network functions virtualization (NFV), and push the network intelligence towards network edges by embracing the concept of mobile edge computing (MEC). As security will be a fundamental enabling factor of small cell as a service (SCaaS) in 5G networks, we present the most prominent threats and vulnerabilities against a broad range of targets. As far as the related work is concerned, to the best of our knowledge, this paper is the first to investigate security challenges at the intersection of SCaaS, NFV, and MEC. It is also the first paper that proposes a set of criteria to facilitate a clear and effective taxonomy of security challenges of main elements of 5G networks. Our analysis can serve as a staring point towards the development of appropriate 5G security solutions. These will have crucial effect on legal and regulatory frameworks as well as on decisions of businesses, governments, and end-users
Regiospecific analysis of Mono and Diglycerides in Glycerolysis products by GC x GC TOF-MS.
Comprehensive bidimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOF-MS) was used for the characterization of regiospecific mono- and diglycerides (MG-DG) content in the glycerolysis products derived from five different lipids included lard (LA), sun flower seed oil (SF), corn oil (CO), butter (BU), and palm oil (PA). The combination of fast and high temperature non-orthogonal column set namely DB17ht (6 m × 0.10 mm × 0.10 μm) as the primary column and SLB-5 ms (60 cm × 0.10 mm × 0.10 μm) as the secondary column was applied in this work. System configuration involved high oven ramp temperature to obtain precise mass spectral identification and highest effluent’s resolution. 3-Monopalmitoyl-sn-glycerol (MG 3-C16) was the highest concentration in LA, BU and PA while monostearoyl-sn-glycerol (MG C18) in CO and 1,3-dilinoleol-rac-glycerol (DG C18:2c) in SF. Principal component analysis accounted 82% of variance using combination of PC1 and PC2. The presence of monostearoyl-sn-glycerol (MG C18), 3-Monopalmitoyl-sn-glycerol (MG 3-C16), 1,3-dilinoleol-rac-glycerol (DG C18:2c), 1,3-dipalmitoyl-glycerol (DG 1,3-C16), and 1,3-dielaidin (DG C18:1t) caused differentiation of the samples tested
Definitions, Criteria and Global Classification of Mast Cell Disorders with Special Reference to Mast Cell Activation Syndromes: A Consensus Proposal
Activation of tissue mast cells (MCs) and their abnormal growth and accumulation in various organs are typically found in primary MC disorders also referred to as mastocytosis. However, increasing numbers of patients are now being informed that their clinical findings are due to MC activation (MCA) that is neither associated with mastocytosis nor with a defined allergic or inflammatory reaction. In other patients with MCA, MCs appear to be clonal cells, but criteria for diagnosing mastocytosis are not met. A working conference was organized in 2010 with the aim to define criteria for diagnosing MCA and related disorders, and to propose a global unifying classification of all MC disorders and pathologic MC reactions. This classification includes three types of `MCA syndromes' (MCASs), namely primary MCAS, secondary MCAS and idiopathic MCAS. MCA is now defined by robust and generally applicable criteria, including (1) typical clinical symptoms, (2) a substantial transient increase in serum total tryptase level or an increase in other MC-derived mediators, such as histamine or prostaglandin D 2, or their urinary metabolites, and (3) a response of clinical symptoms to agents that attenuate the production or activities of MC mediators. These criteria should assist in the identification and diagnosis of patients with MCAS, and in avoiding misdiagnoses or overinterpretation of clinical symptoms in daily practice. Moreover, the MCAS concept should stimulate research in order to identify and exploit new molecular mechanisms and therapeutic targets. Copyright (C) 2011 S. Karger AG, Base
Pulmonary oxygen uptake and muscle deoxygenation kinetics during recovery in trained and untrained male adolescents
Previous studies have demonstrated faster pulmonary oxygen uptake ( V ˙ O 2 ) kinetics in the trained state during the transition to and from moderate-intensity exercise in adults. Whilst a similar effect of training status has previously been observed during the on-transition in adolescents, whether this is also observed during recovery from exercise is presently unknown. The aim of the present study was therefore to examine V ˙ O 2 kinetics in trained and untrained male adolescents during recovery from moderate-intensity exercise. 15 trained (15 ± 0.8 years, V ˙ O 2max 54.9 ± 6.4 mL kg−1 min−1) and 8 untrained (15 ± 0.5 years, V ˙ O 2max 44.0 ± 4.6 mL kg−1 min−1) male adolescents performed two 6-min exercise off-transitions to 10 W from a preceding “baseline” of exercise at a workload equivalent to 80% lactate threshold; V ˙ O 2 (breath-by-breath) and muscle deoxyhaemoglobin (near-infrared spectroscopy) were measured continuously. The time constant of the fundamental phase of V ˙ O 2 off-kinetics was not different between trained and untrained (trained 27.8 ± 5.9 s vs. untrained 28.9 ± 7.6 s, P = 0.71). However, the time constant (trained 17.0 ± 7.5 s vs. untrained 32 ± 11 s, P < 0.01) and mean response time (trained 24.2 ± 9.2 s vs. untrained 34 ± 13 s, P = 0.05) of muscle deoxyhaemoglobin off-kinetics was faster in the trained subjects compared to the untrained subjects. V ˙ O 2 kinetics was unaffected by training status; the faster muscle deoxyhaemoglobin kinetics in the trained subjects thus indicates slower blood flow kinetics during recovery from exercise compared to the untrained subjects
Clinical impact of a targeted next-generation sequencing gene panel for autoinflammation and vasculitis.
BACKGROUND: Monogenic autoinflammatory diseases (AID) are a rapidly expanding group of genetically diverse but phenotypically overlapping systemic inflammatory disorders associated with dysregulated innate immunity. They cause significant morbidity, mortality and economic burden. Here, we aimed to develop and evaluate the clinical impact of a NGS targeted gene panel, the "Vasculitis and Inflammation Panel" (VIP) for AID and vasculitis. METHODS: The Agilent SureDesign tool was used to design 2 versions of VIP; VIP1 targeting 113 genes, and a later version, VIP2, targeting 166 genes. Captured and indexed libraries (QXT Target Enrichment System) prepared for 72 patients were sequenced as a multiplex of 16 samples on an Illumina MiSeq sequencer in 150bp paired-end mode. The cohort comprised 22 positive control DNA samples from patients with previously validated mutations in a variety of the genes; and 50 prospective samples from patients with suspected AID in whom previous Sanger based genetic screening had been non-diagnostic. RESULTS: VIP was sensitive and specific at detecting all the different types of known mutations in 22 positive controls, including gene deletion, small INDELS, and somatic mosaicism with allele fraction as low as 3%. Six/50 patients (12%) with unclassified AID had at least one class 5 (clearly pathogenic) variant; and 11/50 (22%) had at least one likely pathogenic variant (class 4). Overall, testing with VIP resulted in a firm or strongly suspected molecular diagnosis in 16/50 patients (32%). CONCLUSIONS: The high diagnostic yield and accuracy of this comprehensive targeted gene panel validate the use of broad NGS-based testing for patients with suspected AID
Why do you drink caffeine? The development of the Motives for Caffeine Consumption Questionnaire (MCCQ) and its relationship with gender, age and the types of caffeinated beverages
Caffeine is the most popular psychoactive substance that is consumed worldwide. As motives influence behavior, investigation of the motivational background of caffeine consumption should help provide a better understanding of the popularity of caffeinated products. The present study aimed (i) to explore and operationalize the motives of caffeine consumption and (ii) to reveal possible differences in the motives regarding gender, age and the type of caffeinated products consumed. Motives for caffeine consumption were collected from regular caffeine consumers (N = 26) and were informed by a review of the relevant literature. Following this, a cross-sectional study was conducted on a convenience sample of Hungarian university students and working adults (N = 598). The participants completed the Motives for Caffeine Consumption Questionnaire and the Caffeine Consumption Questionnaire. Six motivational factors were identified: Alertness, Habit, Mood, Social, Taste and Symptom Management. Women had higher scores on Habit, Social, Taste and Symptom Management. Younger participants had higher scores on Alertness than the older group, and the older group had higher scores on Habit and Symptom Management. Five types of caffeine users were identified. Those who consumed (i) coffee, (ii) tea, (iii) energy drinks, (iv) coffee and tea and (v) mixed drinks. Several differences between the five groups were revealed across all motives except for Taste. The present study developed a robust psychometric instrument for assessing caffeine consumption motives. The factors varied in importance in relation to gender, age and caffeine consumption habits
Olives and olive oil are sources of electrophilic fatty acid nitroalkenes
Extra virgin olive oil (EVOO) and olives, key sources of unsaturated fatty acids in the Mediterranean diet, provide health benefits to humans. Nitric oxide (•NO) and nitrite (NO2-)-dependent reactions of unsaturated fatty acids yield electrophilic nitroalkene derivatives (NO 2-FA) that manifest salutary pleiotropic cell signaling responses in mammals. Herein, the endogenous presence of NO2-FA in both EVOO and fresh olives was demonstrated by mass spectrometry. The electrophilic nature of these species was affirmed by the detection of significant levels of protein cysteine adducts of nitro-oleic acid (NO2-OA-cysteine) in fresh olives, especially in the peel. Further nitration of EVOO by NO2- under acidic gastric digestive conditions revealed that human consumption of olive lipids will produce additional nitro-conjugated linoleic acid (NO2-cLA) and nitro-oleic acid (NO2-OA). The presence of free and protein-adducted NO2-FA in both mammalian and plant lipids further affirm a role for these species as signaling mediators. Since NO2-FA instigate adaptive anti-inflammatory gene expression and metabolic responses, these redox-derived metabolites may contribute to the cardiovascular benefits associated with the Mediterranean diet. © 2014 Fazzari et al
Isolated left ventricular non-compaction as an unusual cause of heart failure: a case report
<p>Abstract</p> <p>Introduction</p> <p>Isolated left ventricular non-compaction is a recently described form of cardiomyopathy that is associated with a significant risk of life-threatening arrhythmia and thromboembolic complications.</p> <p>Case presentation</p> <p>We report the presentation, diagnosis and management of isolated left ventricular non-compaction in a 54-year-old Caucasian woman presenting with progressive symptoms of heart failure.</p> <p>Conclusion</p> <p>Advances in diagnostic imaging have undoubtedly led to an increase in the detection of isolated left ventricular non-compaction. Diagnosing and differentiating this uncommon condition from other forms of cardiomyopathy are important as treatment and prognosis may differ significantly. Our current understanding of isolated left ventricular non-compaction, including diagnostic criteria, management and prognosis, is discussed.</p
In-vivo optical detection of cancer using chlorin e6 – polyvinylpyrrolidone induced fluorescence imaging and spectroscopy
<p>Abstract</p> <p>Background</p> <p>Photosensitizer based fluorescence imaging and spectroscopy is fast becoming a promising approach for cancer detection. The purpose of this study was to examine the use of the photosensitizer chlorin e6 (Ce6) formulated in polyvinylpyrrolidone (PVP) as a potential exogenous fluorophore for fluorescence imaging and spectroscopic detection of human cancer tissue xenografted in preclinical models as well as in a patient.</p> <p>Methods</p> <p>Fluorescence imaging was performed on MGH human bladder tumor xenografted on both the chick chorioallantoic membrane (CAM) and the murine model using a fluorescence endoscopy imaging system. In addition, fiber optic based fluorescence spectroscopy was performed on tumors and various normal organs in the same mice to validate the macroscopic images. In one patient, fluorescence imaging was performed on angiosarcoma lesions and normal skin in conjunction with fluorescence spectroscopy to validate Ce6-PVP induced fluorescence visual assessment of the lesions.</p> <p>Results</p> <p>Margins of tumor xenografts in the CAM model were clearly outlined under fluorescence imaging. Ce6-PVP-induced fluorescence imaging yielded a specificity of 83% on the CAM model. In mice, fluorescence intensity of Ce6-PVP was higher in bladder tumor compared to adjacent muscle and normal bladder. Clinical results confirmed that fluorescence imaging clearly captured the fluorescence of Ce6-PVP in angiosarcoma lesions and good correlation was found between fluorescence imaging and spectral measurement in the patient.</p> <p>Conclusion</p> <p>Combination of Ce6-PVP induced fluorescence imaging and spectroscopy could allow for optical detection and discrimination between cancer and the surrounding normal tissues. Ce6-PVP seems to be a promising fluorophore for fluorescence diagnosis of cancer.</p
- …
