2,154 research outputs found
The motion of a neutrally buoyant particle of an elliptic shape in two dimensional shear flow: a numerical study
In this paper, we investigate the motion of a neutrally buoyant cylinder of
an elliptic shape freely moving in two dimensional shear flow by direct
numerical simulation. An elliptic shape cylinder in shear flow, when initially
being placed at the middle between two walls, either keeps rotating or has a
stationary inclination angle depending on the particle Reynolds number , where is the shear rate, is the semi-long axis of the
elliptic cylinder and is the kinetic viscosity of the fluid. The critical
particle Reynolds number for the transition from a rotating motion to
a stationary orientation depends on the aspect ratio and the
confined ratio where is the semi-short axis of the elliptic
cylinder and is the distance between two walls. Although the increasing of
either parameters makes an increase in , the dynamic mechanism is
distinct. The variation causes the change of geometry shape; however, the
variation influences the wall effect. The stationary inclination angle of
non-rotating slender elliptic cylinder with smaller confined ratio seems to
depend only on the value of . An expected equilibrium position of
the cylinder mass center in shear flow is the centerline between two walls, but
when placing the particle away from the centerline initially, it migrates
either toward an equilibrium height away from the middle between two walls or
back to the middle depending on the confined ratio and particle Reynolds
number.Comment: arXiv admin note: substantial text overlap with arXiv:1209.080
Improper Ferroelectric Polarisation in a Perovskite driven by Inter-site Charge Transfer and Ordering
It is of great interest to design and make materials in which ferroelectric
polarisation is coupled to other order parameters such as lattice, magnetic and
electronic instabilities. Such materials will be invaluable in next-generation
data storage devices. Recently, remarkable progress has been made in
understanding improper ferroelectric coupling mechanisms that arise from
lattice and magnetic instabilities. However, although theoretically predicted,
a compact lattice coupling between electronic and ferroelectric (polar)
instabilities has yet to be realised. Here we report detailed crystallographic
studies of a novel perovskite
HgMnMnO that is
found to exhibit a polar ground state on account of such couplings that arise
from charge and orbital ordering on both the A' and B-sites, which are
themselves driven by a highly unusual Mn-Mn inter-site charge
transfer. The inherent coupling of polar, charge, orbital and hence magnetic
degrees of freedom, make this a system of great fundamental interest, and
demonstrating ferroelectric switching in this and a host of recently reported
hybrid improper ferroelectrics remains a substantial challenge.Comment: 9 pages, 7 figure
Distributed Training Large-Scale Deep Architectures
Scale of data and scale of computation infrastructures together enable the
current deep learning renaissance. However, training large-scale deep
architectures demands both algorithmic improvement and careful system
configuration. In this paper, we focus on employing the system approach to
speed up large-scale training. Via lessons learned from our routine
benchmarking effort, we first identify bottlenecks and overheads that hinter
data parallelism. We then devise guidelines that help practitioners to
configure an effective system and fine-tune parameters to achieve desired
speedup. Specifically, we develop a procedure for setting minibatch size and
choosing computation algorithms. We also derive lemmas for determining the
quantity of key components such as the number of GPUs and parameter servers.
Experiments and examples show that these guidelines help effectively speed up
large-scale deep learning training
Longitudinal brain structural alterations and systemic inflammation in obstructive sleep apnea before and after surgical treatment
Structural and cognitive deficits in chronic carbon monoxide intoxication: a voxel-based morphometry study
BACKGROUND: Patients with carbon monoxide (CO) intoxication may develop ongoing neurological and psychiatric symptoms that ebb and flow, a condition often called delayed encephalopathy (DE). The association between morphologic changes in the brain and neuropsychological deficits in DE is poorly understood. METHODS: Magnetic resonance imaging and neuropsychological tests were conducted on 11 CO patients with DE, 11 patients without DE, and 15 age-, sex-, and education-matched healthy subjects. Differences in gray matter volume (GMV) between the subgroups were assessed and further correlated with diminished cognitive functioning. RESULTS: As a group, the patients had lower regional GMV compared to controls in the following regions: basal ganglia, left claustrum, right amygdala, left hippocampus, parietal lobes, and left frontal lobe. The reduced GMV in the bilateral basal ganglia, left post-central gyrus, and left hippocampus correlated with decreased perceptual organization and processing speed function. Those CO patients characterized by DE patients had a lower GMV in the left anterior cingulate and right amygdala, as well as lower levels of cognitive function, than the non-DE patients. CONCLUSIONS: Patients with CO intoxication in the chronic stage showed a worse cognitive and morphologic outcome, especially those with DE. This study provides additional evidence of gray matter structural abnormalities in the pathophysiology of DE in chronic CO intoxicated patients
Insights into Chinese perspectives on do-not-resuscitate (DNR) orders from an examination of DNR order form completeness for cancer patients
PURPOSE: Discussing end-of-life care with patients is often considered taboo, and signing a do-not-resuscitate (DNR) order is difficult for most patients, especially in Chinese culture. This study investigated distributions and details related to the signing of DNR orders, as well as the completeness of various DNR order forms. METHODS: Retrospective chart reviews were performed. We screened all charts from a teaching hospital in Taiwan for patients who died of cancer during the period from January 2010 to December 2011. A total of 829 patient records were included in the analysis. The details of the DNR order forms were recorded. RESULTS: The DNR order signing rate was 99.8 %. The percentage of DNR orders signed by patients themselves (DNR-P) was 22.6 %, while the percentage of orders signed by surrogates (DNR-S) was 77.2 %. The percentage of signed DNR forms that were completely filled out was 78.4 %. The percentage of DNR-S forms that were completed was 81.7 %, while the percentage of DNR-P forms that were completely filled out was only 67.6 %. CONCLUSION: Almost all the cancer patients had a signed DNR order, but for the majority of them, the order was signed by a surrogate. Negative attitudes of discussing death from medical professionals and/or the family members of patients may account for the higher number of signed DNR-S orders than DNR-P orders. Moreover, early obtainment of signed DNR orders should be sought, as getting the orders earlier could promote the quality of end-of-life care, especially in non-oncology wards
From Teachers’ Views to Explore the Implementation of Energy Education in Taiwan’s Elementary Schools
This study intended to explore the implementation of promoting “energy education” in Taiwan’s elementary schools. The research adopted a questionnaire (Likert five-point scale) from teachers’ view in three dimensions to construct examination. The 45 participants come from 10 different primary schools distributed across Taiwan, which participate in energy education program in the second period (2015-2017). The data was analyzed by ANOVA, mean and standard deviations of the viewpoints of the participants in the energy education learning achievement of the primary schools. The first findings in this research is, the program of energy education was most effective in “energy attitude” (M=4.282, SD=0.814), followed by “energy awareness” (M=4.049, SD=0.720) and “energy behavior” (M=3.983, SD=0.875). It shows that students have positive energy attitude, but they were relatively weak at energy saving behavior. Secondly, there is statistically significant difference in overall students learning performance with urban areas are higher than rural areas. Finally, it is suggested that in addition to strengthen energy attitudes and energy awareness, we should encourage students to take action in save energy in their daily life. Furthermore, we should invest more resources to rural areas to balance the students’ performances between urban and rural areas
Janus monolayers of transition metal dichalcogenides.
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements
- …
