4,302 research outputs found

    Deterministic Dense Coding and Faithful Teleportation with Multipartite Graph States

    Full text link
    We proposed novel schemes to perform the deterministic dense coding and faithful teleportation with multipartite graph states. We also find the sufficient and necessary condition of a viable graph state for the proposed scheme. That is, for the associated graph, the reduced adjacency matrix of the Tanner-type subgraph between senders and receivers should be invertible.Comment: 10 pages, 1 figure;v2. discussions improve

    Improved Compact Visibility Representation of Planar Graph via Schnyder's Realizer

    Full text link
    Let GG be an nn-node planar graph. In a visibility representation of GG, each node of GG is represented by a horizontal line segment such that the line segments representing any two adjacent nodes of GG are vertically visible to each other. In the present paper we give the best known compact visibility representation of GG. Given a canonical ordering of the triangulated GG, our algorithm draws the graph incrementally in a greedy manner. We show that one of three canonical orderings obtained from Schnyder's realizer for the triangulated GG yields a visibility representation of GG no wider than 22n4015\frac{22n-40}{15}. Our easy-to-implement O(n)-time algorithm bypasses the complicated subroutines for four-connected components and four-block trees required by the best previously known algorithm of Kant. Our result provides a negative answer to Kant's open question about whether 3n62\frac{3n-6}{2} is a worst-case lower bound on the required width. Also, if GG has no degree-three (respectively, degree-five) internal node, then our visibility representation for GG is no wider than 4n93\frac{4n-9}{3} (respectively, 4n73\frac{4n-7}{3}). Moreover, if GG is four-connected, then our visibility representation for GG is no wider than n1n-1, matching the best known result of Kant and He. As a by-product, we obtain a much simpler proof for a corollary of Wagner's Theorem on realizers, due to Bonichon, Sa\"{e}c, and Mosbah.Comment: 11 pages, 6 figures, the preliminary version of this paper is to appear in Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS), Berlin, Germany, 200

    Multipartite Entanglement Measures and Quantum Criticality from Matrix and Tensor Product States

    Full text link
    We compute the multipartite entanglement measures such as the global entanglement of various one- and two-dimensional quantum systems to probe the quantum criticality based on the matrix and tensor product states (MPSs/TPSs). We use infinite time-evolving block decimation (iTEBD) method to find the ground states numerically in the form of MPSs/TPSs, and then evaluate their entanglement measures by the method of tensor renormalization group (TRG). We find these entanglement measures can characterize the quantum phase transitions by their derivative discontinuity right at the critical points in all models considered here. We also comment on the scaling behaviors of the entanglement measures by the ideas of quantum state renormalization group transformations.Comment: 22 pages, 11 figure

    Orderly Spanning Trees with Applications

    Full text link
    We introduce and study the {\em orderly spanning trees} of plane graphs. This algorithmic tool generalizes {\em canonical orderings}, which exist only for triconnected plane graphs. Although not every plane graph admits an orderly spanning tree, we provide an algorithm to compute an {\em orderly pair} for any connected planar graph GG, consisting of a plane graph HH of GG, and an orderly spanning tree of HH. We also present several applications of orderly spanning trees: (1) a new constructive proof for Schnyder's Realizer Theorem, (2) the first area-optimal 2-visibility drawing of GG, and (3) the best known encodings of GG with O(1)-time query support. All algorithms in this paper run in linear time.Comment: 25 pages, 7 figures, A preliminary version appeared in Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), Washington D.C., USA, January 7-9, 2001, pp. 506-51

    The (1|1)-Centroid Problem on the Plane Concerning Distance Constraints

    Get PDF

    A Perfect Match Condition for Point-Set Matching Problems Using the Optimal Mass Transport Approach

    Get PDF
    We study the performance of optimal mass transport--based methods applied to point-set matching problems. The present study, which is based on the L2 mass transport cost, states that perfect matches always occur when the product of the point-set cardinality and the norm of the curl of the nonrigid deformation field does not exceed some constant. This analytic result is justified by a numerical study of matching two sets of pulmonary vascular tree branch points whose displacement is caused by the lung volume changes in the same human subject. The nearly perfect match performance verifies the effectiveness of this mass transport--based approach.Read More: http://epubs.siam.org/doi/abs/10.1137/12086443
    corecore