39 research outputs found

    Molecular insights of nickel binding to therapeutic antibodies as a possible new antibody superantigen

    Get PDF
    The binding of nickel by immune proteins can manifest as Type IV contact dermatitis (Ni-specific T cells mediated) and less frequently as Type I hypersensitivity with both mechanisms remaining unknown to date. Since there are reports of patients co-manifesting the two hypersensitivities, a common mechanism may underlie both the TCR and IgE nickel binding. Focusing on Trastuzumab and Pertuzumab IgE variants as serendipitous investigation models, we found Ni-NTA interactions independent of Her2 binding to be due to glutamine stretches. These stretches are both Ni-inducible and in fixed pockets at the antibody complementarity-determining regions (CDRs) and framework regions (FWRs) of both the antibody heavy and light chains with influence from the heavy chain constant region. Comparisons with TCRs structures revealed similar interactions, demonstrating the possible underlying mechanism in selecting for Ni-binding IgEs and TCRs respectively. With the elucidation of the interaction, future therapeutic antibodies could also be sagaciously engineered to utilize such nickel binding for biotechnological purposes

    Variable-heavy (VH) families influencing IgA1&2 engagement to the antigen, FcαRI and superantigen proteins G, A, and L

    Get PDF
    Interest in IgA as an alternative antibody format has increased over the years with much remaining to be investigated in relation to interactions with immune cells. Considering the recent whole antibody investigations showing significant distal effects between the variable (V) and constant (C)- regions that can be mitigated by the hinge regions of both human IgA subtypes A1 and A2, we performed an in-depth mechanistic investigation using a panel of 28 IgA1s and A2s of both Trastuzumab and Pertuzumab models. FcαRI binding were found to be mitigated by the differing glycosylation patterns in IgA1 and 2 with contributions from the CDRs. On their interactions with antigen-Her2 and superantigens PpL, SpG and SpA, PpL was found to sterically hinder Her2 antigen binding with unexpected findings of IgAs binding SpG at the CH2-3 region alongside SpA interacting with IgAs at the CH1. Although the VH3 framework (FWR) is commonly used in CDR grafting, we found the VH1 framework (FWR) to be a possible alternative when grafting IgA1 and 2 owing to its stronger binding to antigen Her2 and weaker interactions to superantigen Protein L and A. These findings lay the foundation to understanding the interactions between IgAs and microbial superantigens, and also guide the engineering of IgAs for future antibody applications and targeting of superantigen-producing microbes

    Allosteric Effects between the Antibody Constant and Variable Regions: A Study of IgA Fc Mutations on Antigen Binding

    No full text
    Therapeutic antibodies have shifted the paradigm of disease treatments from small molecules to biologics, especially in cancer therapy. Despite the increasing number of antibody candidates, much remains unknown about the antibody and how its various regions interact. Recent findings showed that the antibody constant region can govern localization effects that are useful in reducing side effects due to systemic circulation by the commonly used IgG isotypes. Given their localized mucosal effects, IgA antibodies are increasingly promising therapeutic biologics. While the antibody Fc effector cell activity has been a focus point, recent research showed that the Fc could also influence antigen binding, challenging the conventional idea of region-specific antibody functions. To investigate this, we analysed the IgA antibody constant region and its distal effects on the antigen binding regions using recombinant Pertuzumab IgA1 and IgA2 variants. We found that mutations in the C-region reduced Her2 binding experimentally, and computational structural analysis showed that allosteric communications were highly dependent on the antibody hinge, providing strong evidence that we should consider antibodies as whole proteins rather than a sum of functional regions

    Improving the discrimination of near-native complexes for protein rigid docking by implementing interfacial water into protein interfaces

    No full text
    Protein-protein docking is an in silico method to predict the formation of protein complexes. Due to the limited computational resources, the protein docking approach has been originated and developed under the assumption of rigid docking, in which one of the two protein partners remains rigid during the protein associations. The rigid docking has successfully predicted structures of various protein complexes, but often failed if the proteins acquire conformational changes or are driven by influences of other factors (e.g. solvent) while interacting. Formulation of the initial rigid docking contains two main stages: (1) searching for all possible surface matches on a rotational and translational sampling space and (2) ranking those possible solutions to distinguish the correct predictions by locating them on the top high ranks. To obtain better results of the protein rigid docking, one can improve it by optimizing the solutions in the search space or by developing more effective ranking methodology to discriminate the correct predictions from the incorrect or false positive ones. However, while development and improvement are reported in the searching stage, it seems to-date that most initial docking algorithms find it difficult or even fail to locate successfully the correct predictions apart from the others in the ranking stage, especially for Antigen/Antibody complexes. To tackle this issue, a new energy-based scoring function is proposed in this research, namely IFACEwat, to re-rank the results of an initial rigid docking algorithm and therefore further improve the discrimination of the near-native structures from the other false positives. Unlike other re-ranking techniques, in which the solvent effect is ignored or implicitly presented, the IFACEwat implements interfacial water into the protein interfaces and explicitly reflects the water influences on the protein interactions. The IFACEwat was implemented based on the interface Atomic Contact Energy (IFACE) of the initial rigid docking algorithm ZDOCK3.0.2 and the derived energies of water-involved interactions at the protein interfaces. The IFACEwat therefore not only takes advantages of shape complementarity from the initial rigid docking algorithm for protein recognitions but also accounts for the water-mediated contacts during the protein associations. Evaluated for various types of protein complexes, the IFACEwat both increases the numbers of the near-native structures and improves their ranks (i.e. most of them ranked at the top-1) as compared to the original rigid docking. In fact, it achieves a success rate of 83.8% for Antigen/Antibody complexes, which is 10% better than ZDOCK3.0.2. As compared to another re-ranking technique ZRANK, the IFACEwat obtains success rates of 92.3% (8% better) and 90% (5% better) respectively for medium and difficult cases. When comparing with the latest published re-ranking method in F2Dock, it performs equivalently well or better for several Antigen/Antibody complexes. In conclusion, with the inclusion of interfacial water, the IFACEwat improves significantly the results of the initial rigid docking, especially for Antigen/Antibody complexes. The improvement is achieved by explicitly accounting the contribution of water during the protein interactions, which was ignored or not fully presented by the initial rigid docking and other re-ranking techniques. In addition, the IFACEwat maintains the sufficient computational efficiency of the initial docking algorithm, yet improves the ranks as well as the number of the near-native structures found.DOCTOR OF PHILOSOPHY (SCE

    Molecular docking analysis of 2009-H1N1 and 2004-H5N1 influenza virus HLA-B*4405-restricted HA epitope candidates : implications for TCR cross-recognition and vaccine development

    Get PDF
    Background: The pandemic 2009-H1N1 influenza virus circulated in the human population and caused thousands deaths worldwide. Studies on pandemic influenza vaccines have shown that T cell recognition to conserved epitopes and cross-reactive T cell responses are important when new strains emerge, especially in the absence of antibody cross-reactivity. In this work, using HLA-B*4405 and DM1-TCR structure model, we systematically generated high confidence conserved 2009-H1N1 T cell epitope candidates and investigated their potential cross-reactivity against H5N1 avian flu virus.Conclusions: The results are novel with regard to HA epitopes and useful for developing possible vaccination strategies against the rapidly changing influenza viruses. Yet, the challenge of identifying epitope candidates that result in heterologous T cell immunity under natural influenza infection conditions can only be overcome if more structural data on the TCR repertoire become available.Results: Molecular docking analysis of differential DM1-TCR recognition of the 2009-H1N1 epitope candidates yielded a mosaic epitope (KEKMNTEFW) and potential H5N1 HA cross-reactive epitopes that could be applied as multivalent peptide towards influenza A vaccine development. Structural models of TCR cross-recognition between 2009-H1N1 and 2004-H5N1 revealed steric and topological effects of TCR contact residue mutations on TCR binding affinity.Published versio

    Structural modelling of the lumenal domain of human GPAA1, the metallo-peptide synthetase subunit of the transamidase complex, reveals zinc-binding mode and two flaps surrounding the active site

    No full text
    Abstract Background The transamidase complex is a molecular machine in the endoplasmic reticulum of eukaryotes that attaches a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins after cleaving a C-terminal propeptide with a defined sequence signal. Its five subunits are very hydrophobic; thus, solubility, heterologous expression and complex reconstruction are difficult. Therefore, theoretical approaches are currently the main source of insight into details of 3D structure and of the catalytic process. Results In this work, we generated model 3D structures of the lumenal domain of human GPAA1, the M28-type metallo-peptide-synthetase subunit of the transamidase, including zinc ion and model substrate positions. In comparative molecular dynamics (MD) simulations of M28-type structures and our GPAA1 models, we estimated the metal ion binding energies with evolutionary conserved amino acid residues in the catalytic cleft. We find that canonical zinc binding sites 2 and 3 are strongest binders for Zn1 and, where a second zinc is available, sites 2 and 4 for Zn2. Zinc interaction of site 5 with Zn1 enhances upon substrate binding in structures with only one zinc. Whereas a previously studied glutaminyl cyclase structure, the best known homologue to GPAA1, binds only one zinc ion at the catalytic site, GPAA1 can sterically accommodate two. The M28-type metallopeptidases segregate into two independent branches with regard to one/two zinc ion binding modality in a phylogenetic tree where the GPAA1 family is closer to the joint origin of both groups. For GPAA1 models, MD studies revealed two large loops (flaps) surrounding the active site being involved in an anti-correlated, breathing-like dynamics. Conclusions In the light of combined sequence-analytic and phylogenetic arguments as well as 3D structural modelling results, GPAA1 is most likely a single zinc ion metallopeptidase. Two large flaps environ the catalytic site restricting access to large substrates. Reviewers This article was reviewed by Thomas Dandekar (MD) and Michael Gromiha. </jats:sec

    Structural modelling of the lumenal domain of human GPAA1, the metallo-peptide synthetase subunit of the transamidase complex, reveals zinc-binding mode and two flaps surrounding the active site

    No full text
    Background: The transamidase complex is a molecular machine in the endoplasmic reticulum of eukaryotes that attaches a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins after cleaving a C-terminal propeptide with a defined sequence signal. Its five subunits are very hydrophobic; thus, solubility, heterologous expression and complex reconstruction are difficult. Therefore, theoretical approaches are currently the main source of insight into details of 3D structure and of the catalytic process. Results: In this work, we generated model 3D structures of the lumenal domain of human GPAA1, the M28-typemetallo-peptide-synthetase subunit of the transamidase, including zinc ion and model substrate positions. Incomparative molecular dynamics (MD) simulations of M28-type structures and our GPAA1 models, we estimatedthe metal ion binding energies with evolutionary conserved amino acid residues in the catalytic cleft. We find that canonical zinc binding sites 2 and 3 are strongest binders for Zn1 and, where a second zinc is available,sites 2 and 4 for Zn2. Zinc interaction of site 5 with Zn1enhances upon substrate binding in structures with only one zinc. Whereas a previously studied glutaminyl cyclase structure, the best known homologue toGPAA1, binds only one zinc ion at the catalytic site,GPAA1 can sterically accommodate two. The M28-typemetallopeptidases segregate into two independent branches with regard to one/two zinc ion binding modalityin a phylogenetic tree where the GPAA1 family is closer to the joint origin of both groups. For GPAA1 models,MD studies revealed two large loops (flaps) surrounding the active site being involved in an anti-correlated,breathing-like dynamics. Conclusions: In the light of combined sequence-analytic and phylogenetic arguments as well as 3D structural modelling results, GPAA1 is most likely a single zinc ion metallopeptidase. Two large flaps environ the catalyticsite restricting access to large substrates.Agency for Science, Technology and Research (A*STAR)Published versionThe authors acknowledge general financial support from A*STAR

    Structural Modelling of the Lumenal Domain of Human GPAA1, the Metallo-Peptide Synthetase Subunit of the Transamidase Complex, Reveals Zinc-Binding Mode and Two Flaps Surrounding the Active Site

    No full text
    Abstract Background The transamidase complex is a molecular machine in the endoplasmic reticulum of eukaryotes that attaches a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins after cleaving a C-terminal propeptide with a defined sequence signal. Its five subunits are very hydrophobic; thus, solubility, heterologous expression and complex reconstruction are difficult. Therefore, theoretical approaches are currently the main source of insight into details of 3D structure and of the catalytic process. Results In this work, we generated model 3D structures of the lumenal domain of human GPAA1, the M28-type metallo-peptide-synthetase subunit of the transamidase, including zinc ion and model substrate positions. In comparative molecular dynamics (MD) simulations of M28-type structures and our GPAA1 models, we estimated the metal ion binding energies with evolutionary conserved amino acid residues in the catalytic cleft. We find that canonical zinc binding sites 2 and 3 are strongest binders for Zn1 and, where a second zinc is available, sites 2 and 4 for Zn2. Zinc interaction of site 5 with Zn1 enhances upon substrate binding in structures with only one zinc. Whereas a previously studied glutaminyl cyclase structure, the best known homologue to GPAA1, binds only one zinc ion at the catalytic site, GPAA1 can sterically accommodate two. The M28-type metallopeptidases segregate into two independent branches with regard to one/two zinc ion binding modality in a phylogenetic tree where the GPAA1 family is closer to the joint origin of both groups. For GPAA1 models, MD studies revealed two large loops (flaps) surrounding the active site being involved in an anti-correlated, breathing-like dynamics. Conclusions In the light of combined sequence-analytic and phylogenetic arguments as well as 3D structural modelling results, GPAA1 is most likely a single zinc ion metallopeptidase. Two large flaps environ the catalytic site restricting access to large substrates.</jats:p
    corecore