1,323 research outputs found
Wide-band variable transversal phase-shifter
We present a novel broadband phase-shifter based on a transversal filter configuration. This approach allows flexible control of the amplitude response while providing continuous variation of a linear phase slope. Numerical examples, both ideal and using practical RF components are presented and practical challenges in realising the phase-shifter are identified
Wideband RF photonic vector sum phase-shifter
A novel broadband linear phase phase-shifter based on the vector summation method is proposed. A photonic implementation of the phase-shifter with a continuously variable linear phase-shift up to 120° over the frequency range of DC-4 GHz is demonstrated. Good agreement between the measured responses and theoretical predictions is obtained
Demonstration of wide band RF photonic transversal phase-shifter
A transversal phase-shifter using multiple MZMs is demonstrated. The device exhibits continuously variable phase-shift exceeding 360° at 2 GHz and amplitude uniformity within 3 dB over 0.2-2 GHz. The device stability and practicality are discussed
Structural Adaptability Facilitates Histidine Heme Ligation in a Cytochrome P450
Almost all known members of the cytochrome P450 (CYP) superfamily conserve a key cysteine residue that coordinates the heme iron. Although mutation of this residue abolishes monooxygenase activity, recent work has shown that mutation to either serine or histidine unlocks non-natural carbene- and nitrene-transfer activities. Here we present the first crystal structure of a histidine-ligated P450. The T213A/C317H variant of the thermostable CYP119 from Sulfolobus acidocaldarius maintains heme iron coordination through the introduced ligand, an interaction that is accompanied by large changes in the overall protein structure. We also find that the axial cysteine C317 may be substituted with any other amino acid without abrogating folding and heme cofactor incorporation. Several of the axial mutants display unusual spectral features, suggesting that they have active sites with unique steric and electronic properties. These novel, highly stable enzyme active sites will be fruitful starting points for investigations of non-natural P450 catalysis and mechanisms
Age-related penetrance of the C9orf72 repeat expansion
A pathogenic hexanucleotide repeat expansion within the C9orf72 gene has been identified as the major cause of two neurodegenerative syndromes, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This mutation is known to have incomplete penetrance, with some patients developing disease in their twenties and a small portion of carriers surviving to their ninth decade without developing symptoms. Describing penetrance by age among C9orf72 carriers and identifying parameters that alter onset age are essential to better understanding this locus and to enhance predictive counseling. To do so, data from 1,170 individuals were used to model penetrance. Our analysis showed that the penetrance was incomplete and age-dependent. Additionally, familial and sporadic penetrance did not significantly differ from one another; ALS cases exhibited earlier age of onset than FTD cases; and individuals with spinal-onset exhibited earlier age of onset than those with bulbar-onset. The older age of onset among female cases in general, and among female bulbar-onset cases in particular, was the most striking finding, and there may be an environmental, lifestyle, or hormonal factor that is influencing these penetrance patterns. These results will have important applications for future clinical research, the identification of disease modifiers, and genetic counseling.Peer reviewe
Role of HTRA1 in bone formation and regeneration: In vitro and in vivo evaluation
The role of mammalian high temperature requirement protease A1 (HTRA1) in somatic stem cell differentiation and mineralized matrix formation remains controversial, having been demonstrated to impart either anti- or pro-osteogenic effects, depending on the in vitro cell model used. The aim of this study was therefore to further evaluate the role of HTRA1 in regulating the differentiation potential and lineage commitment of murine mesenchymal stem cells in vitro, and to assess its influence on bone structure and regeneration in vivo. Our results demonstrated that short hairpin RNA-mediated ablation of Htra1 in the murine mesenchymal cell line C3H10T1/2 increased the expression of several osteogenic gene markers, and significantly enhanced matrix mineralization in response to BMP-2 stimulation. These effects were concomitant with decreases in the expression of chondrogenic gene markers, and increases in adipogenic gene expression and lipid accrual. Despite the profound effects of loss-of-function of HTRA1 on this in vitro osteochondral model, these were not reproduced in vivo, where bone microarchitecture and regeneration in 16-week-old Htra1-knockout mice remained unaltered as compared to wild-type controls. By comparison, analysis of femurs from 52-week-old mice revealed that bone structure was better preserved in Htra1-knockout mice than age-matched wild-type controls. These findings therefore provide additional insights into the role played by HTRA1 in regulating mesenchymal stem cell differentiation, and offer opportunities for improving our understanding of how this multifunctional protease may act to influence bone quality
Decoding distinctive features of plasma extracellular vesicles in amyotrophic lateral sclerosis
Bringing the countryside to the city: practices and imaginations of the rural in Ho Chi Minh city, Vietnam
10.1177/0042098014563031Urban Studies532324-33
- …
